Pandas读取TXT文件

909 阅读5分钟

公众号:尤而小屋
作者:Peter
编辑:Peter

大家好,我是Peter~

本文记录的是如何使用Pandas来读取不同情况下的TXT文件,主要是介绍部分常见参数的使用。

文章中涉及到文本匹配知识:正则表达式,有一定的正则基础食用更香,小编以后会专门写一篇Python正则表达式的文章。

正则基础

下面的表格记录的是正则表达式中常用元字符及其含义:

符号含义
点.匹配除换行符外的任意字符
星号*匹配0个或者多个任意字符
问号?匹配0个或者1个任意字符(非贪婪模式)
开始位置
$结束位置
\s匹配任意空白
\S匹配任意非空白
\d匹配一个数字
\D匹配一个数字
\w匹配一个单词字符,包含数字和字母
\W匹配一个单词字符,包含数字和字母
[abcd]匹配abcd中的一个任意字符
[^abcd]匹配不含包abcd的任意字符,其中^表示非
+匹配1次或者多次前面的内容
{n}匹配n词(固定)
{n,}匹配至少n次
{n,m}匹配n到m次
x|y匹配x或者y
()匹配括号内的内容

参数

详细的参数参考官网

pandas.pydata.org/docs/refere…

pandas.read_table(
  filepath_or_buffer,
  sep=NoDefault.no_default, 
  delimiter=None, 
  header='infer', 
  names=NoDefault.no_default, 
  index_col=None, 
  usecols=None, 
  squeeze=None, 
  prefix=NoDefault.no_default, 
  mangle_dupe_cols=True, 
  dtype=None,
  engine=None, 
  converters=None, 
  true_values=None, 
  false_values=None, 
  skipinitialspace=False, 
  skiprows=None, 
  skipfooter=0, 
  nrows=None, 
  na_values=None, 
  keep_default_na=True, 
  na_filter=True, 
  verbose=False, 
  skip_blank_lines=True, 
  parse_dates=False, 
  infer_datetime_format=False, 
  keep_date_col=False, 
  date_parser=None, 
  dayfirst=False, 
  cache_dates=True, 
  iterator=False, 
  chunksize=None, 
  compression='infer', 
  thousands=None, 
  decimal='.', 
  lineterminator=None, 
  quotechar='"', 
  quoting=0, 
  doublequote=True, 
  escapechar=None, 
  comment=None, 
  encoding=None, 
  encoding_errors='strict', 
  dialect=None, 
  error_bad_lines=None, 
  warn_bad_lines=None, 
  on_bad_lines=None, 
  delim_whitespace=False, 
  low_memory=True, 
  memory_map=False, 
  float_precision=None, 
  storage_options=None)

可以看到pandas.read_table()函数中的绝大部分的参数和pandas.read_csv是比较类似的,下面内容中介绍的用法也是类似的。可以参考学习。

模拟数据

import pandas as pd
import numpy as np

模拟了6份不同场景下的数据:

1、数据1特点:

  • 没有表头
  • 只有一个空格
# txt_data1.txt
18 xiaoming male
20 xiaozhou female
30 sunjun male
19 zhouqiang male

2、数据2特点:

  • 有表头
  • 只有一个空格
age name sex
18 xiaoming male
20 xiaozhou female
30 sunjun male
19 zhouqiang male

3、数据3特点:

  • 有表头
  • 存在多个空格
age name   sex     # 表头
18  xiaoming    male  # 存在多个空格
20 xiaozhou female
30 sunjun male
19 zhouqiang male

4、数据4特点:

  • 有表头
  • 连接符号不是空格,是+
age+name+sex
18+xiaoming+male
20+xiaozhou+female
30+sunjun+male
19+zhouqiang+male

5、数据5特点

  • 没有表头
  • 没有固定连接符
0female135guangzhou139
1male140shenzhen128
2male127xiamen145
3female129beijing150

6、数据6特点:

  • 有无效信息
  • 有空白行
  • 没有表头
## 数据:信息学院学生信息
## 学期:第一学期
18 xiaoming male
20 xiaozhou female
30 sunjun male
19 zhouqiang male

## 数据信息为模拟数据

默认读取

pd.read_table("txt_data1.txt")  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
18 xiaoming male
0 20 xiaozhou female
1 30 sunjun male
2 19 zhouqiang male
pd.read_table("txt_data2.txt")  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male
pd.read_table("txt_data3.txt")  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male

从默认读取的结果来看,pandas默认将第一行数据当做了表头,而且只有一列数据产生。

表头-header

pd.read_table("txt_data1.txt",header=None)  # 表示使用自然数来做表头
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
0
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male
pd.read_table("txt_data1.txt",header=[0])  # 表示将第一行当做表头
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
18 xiaoming male
0 20 xiaozhou female
1 30 sunjun male
2 19 zhouqiang male

指定分割符-sep

指定空格为分隔符

pd.read_table("txt_data1.txt",sep=" ")  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
18 xiaoming male
0 20 xiaozhou female
1 30 sunjun male
2 19 zhouqiang male

\s也可以看做是将空白当做分隔符

pd.read_table("txt_data1.txt",sep="\s")  # \s表示空行
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
18 xiaoming male
0 20 xiaozhou female
1 30 sunjun male
2 19 zhouqiang male
pd.read_table("txt_data1.txt", sep=" ", header=None)  

sep 和 header参数的连用:

.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
0 1 2
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male

使用+作为分割符:

pd.read_table("txt_data4.txt",sep="+",header=None)  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
0 1 2
0 age name sex
1 18 xiaoming male
2 20 xiaozhou female
3 30 sunjun male
4 19 zhouqiang male

其他分割符

+号表示匹配一个或者多个前面的元素:

# \s 匹配空白行  +匹配多个元素

pd.read_table("txt_data3.txt",sep="\s+")  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male

自定义表头-names

pd.read_table("txt_data1.txt",
              sep=" ",
              names=["age","name","sex"]  # 自定义表头
             )  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male

指定索引-index_col

指定作为索引的列:

pd.read_table("txt_data1.txt",
              sep=" ",
              names=["age","name","sex"],
              index_col=[1]  # 将name作为索引
             )  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age sex
name
xiaoming 18 male
xiaozhou 20 female
sunjun 30 male
zhouqiang 19 male

字母作为分隔符

pd.read_table("txt_data5.txt",
              sep="\D+",  # 使用非数字作为分割符
              names=["id","col1","col2"])  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
id col1 col2
0 0 135 139
1 1 140 128
2 2 127 145
3 3 129 150

指定数据类型-dtype

df = pd.read_table("txt_data5.txt",
              sep="\D+",
              names=["id","col1","col2"]) 
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
id col1 col2
0 0 135 139
1 1 140 128
2 2 127 145
3 3 129 150
df.dtypes  # 默认类型
id      int64
col1    int64
col2    int64
dtype: object
df = pd.read_table("txt_data5.txt",
              sep="\D+",  # 以非数字作为分隔符
              names=["id","col1","col2"],
              dtype={"id":'int32',"col1":'int32',"col2":"float64"})

df.dtypes  # 指定类型
id        int32
col1      int32
col2    float64
dtype: object

字段转换-converters

pd.read_table(
    "txt_data3.txt",
      sep="\s+",
      usecols=[0,1,2],
      converters={
          1: lambda x: x.upper(),  # 全部大写
          2: lambda x: x.title()  # 首字母大写
      }
             )  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 XIAOMING Male
1 20 XIAOZHOU Female
2 30 SUNJUN Male
3 19 ZHOUQIANG Male

跳过指定行-skiprows

pd.read_table("txt_data6.txt",
              sep="\s+", 
              names=["age", "name", "sex"],
              skiprows=[0,1,7]  # 索引从0开始;跳过指定行
             )  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male

跳过空白行-skip_blank_lines

pd.read_table("txt_data6.txt",
              sep="\s+", 
              skip_blank_lines=False,  # 默认是True;在这里没有跳过空白行
              names=["age", "name", "sex"],
              skiprows=[0,1,7]  
             )  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18.0 xiaoming male
1 20.0 xiaozhou female
2 30.0 sunjun male
3 19.0 zhouqiang male
4 NaN NaN NaN
pd.read_table("txt_data6.txt",
              sep="\s+", 
              skip_blank_lines=True,  # 默认是True
              names=["age", "name", "sex"],
              skiprows=[0,1,7]  
             )  
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
age name sex
0 18 xiaoming male
1 20 xiaozhou female
2 30 sunjun male
3 19 zhouqiang male