持续创作,加速成长!这是我参与「掘金日新计划 · 6 月更文挑战」的第21天,点击查看活动详情
源码:
3. 分布式
3.1 环境搭建
- 搭建三主三从Cluster模式的Redis集群,配置Redisson
- 搭建ETCD集群
3.2 实现方法
3.2.1 基于Redisson的Redis分布式锁,正常
api/v2/with-redission?gid=1197
注意要用Redis Lock把整个事务提交都包住。这里仅仅使用了Redis分布式提供的锁功能,秒杀数据处理还是直接访问数据库来完成
func WithRedssionSecKillGoods(gid , userID int) error {
g := strconv.Itoa(gid)
uuid := getUuid(g)
lockSuccess, err := cache.RedisClient.SetNX(g, uuid, time.Second*3).Result()
if err != nil || !lockSuccess {
fmt.Println("get lock fail", err)
return errors.New("get lock fail")
} else {
fmt.Println("get lock success")
}
err = WithoutLockSecKillGoods(gid, userID)
if err != nil {
return err
}
value, _ := cache.RedisClient.Get(g).Result()
if value == uuid { //compare value,if equal then del
_, err := cache.RedisClient.Del(g).Result()
if err != nil {
fmt.Println("unlock fail")
return nil
} else {
fmt.Println("unlock success")
}
}
return nil
}
3.2.2 基于缓存的ETCD分布式锁,正常
api/v2/with-etcd?gid=1197
类似于之前使用BlockingQueue时编写了一个单例模式的工具类来全局使用的形式相同,注意这里也要用ETCD分布式锁把整个事务提交都包住。这里只用了ETCD的分布式锁功能,秒杀数据处理也是直接访问数据库来完成
func WithETCDSecKillGoods(gid, userID int) error {
var conf = clientv3.Config{
Endpoints: []string{"127.0.0.1:2379"},
DialTimeout: 5 * time.Second,
}
eMutex1 := &EtcdMutex{
Conf: conf,
Ttl: 10,
Key: "lock",
}
err := eMutex1.Lock()
if err != nil {
return err
}
err = WithoutLockSecKillGoods(gid, userID)
eMutex1.UnLock()
return err
}
3.2.3 Redis的List队列,正常
api/v2/with-redis-list?gid=1197
这里利用Redis分布式队列的方式是,在秒杀活动初始化阶段时有多少库存就在Redis的List中初始化多少个商品元素。 然后每有一个用户进行秒杀,就从List队列中取出一个商品元素分配给该用户。 同时将该用户信息存入到Redis的Set类型中,防止用户多次秒杀的情况。 在秒杀结束之后,在Redis中数据写入到数据库中进行保存。可参考下图:
func WithRedisListSecKillGoods(gid, userID int) error {
g := strconv.Itoa(gid)
u := strconv.Itoa(userID)
if cache.RedisClient.Get(u + g).Val() == "" { // 这用户没有秒杀过
cache.RedisClient.RPop(g)
cache.RedisClient.Set(u+g, g, 3*time.Minute)
cache.RedisClient.ZAdd(g, redis.Z{float64(time.Now().Unix()), userID})
} else { // 这用户已经有记录了
return errors.New("该用户已经抢过了")
}
return nil
}
3.2.4 Redis原子递减,正常
这里先将秒杀商品的库存数量,写入到redis中,利用redis的incr来实现原子递减。 假如有100件商品,这里相当于准备好了100个钥匙,有人没有抢到钥匙,就返回库存不够,有人抢到了钥匙,就进行下一步处理,先将秒杀订单的信息写入到redis中,等空闲下来后在写入到数据库中。这里其实与3.2.3差不多
其他
-
基于Redis的任务队列,订阅监听 (是将在前端进行秒杀的用户的信息传入到通道中,等待被消费。后端订阅监听这个通道,有秒杀用户信息传过来就进行消费处理,再将处理数据写入到数据库。)
-
基于MQ消息队列的分布式锁
改进:
- 索引与SQL语句检查
- 尽可能利用缓存
- 利用MQ进行流量削峰
- Nginx负载均衡
- 读写分离与分表分库
- CDN内容分发网络
- 流量防刷和反爬虫