架构初探 | 青训营笔记

74 阅读6分钟

这是我参与「第三届青训营 -后端场」笔记创作活动的的第6篇笔记

什么是架构

架构定义

架构,又称软件架构:

  • 是有关软件整体结构与组件的抽象描述
  • 用于指导软件系统各个方面的设计

架构的重要性

我们都知道,地基对于一栋楼房的主要性,架构对于一个软件的重要性也是类似的:

  • 架构没设计好,软件容易崩,用户体验上不去。最终要么重构,要么放弃
  • 架构设计好了,软件的稳定性上去了,用户体验高了,口碑一点点就打造出来了
  • 良好的架构基础,也为软件的未来发展提供了更多的可能。为用户赋能,实现自身价值

单机架构

All in one,所有的东西都在一个进程里,部署在一个机器上。

优点:

  • 简单

缺点:

  • 运维需要停服,用户体验较差
  • 承载能力有限。

单体架构

在单机架构的基础上,将进程部署到多个机器上。

优点:

  • 具备水平扩容能力
  • 运维不需要停服

缺点:

  • 后端进程职责太多,越来越臃肿
  • 爆炸半径较大,进程中一个很小的模块出现问题,都可能导致整个进程崩溃

垂直应用架构

在单机架构基础上,将进程按照某种依据切分开。比如,A 软件和 B 软件的后端原先采用单机架构部署,那就是一个进程部署在多个机器上;如果用垂直应用架构,可以将 A 和 B 的后端拆分为 A、B 两个进程,然后再按照单体模式的思路,部署在多个机器上。

优点:

  • 一定程度上减少了后端进程职责
  • 一定程度上缩小爆炸半径

缺点:

  • 没有根本解决单体架构的问题

SOA (面向服务架构)

SOA 架构中,服务为一等公民,将进程按照不同的功能单元进行抽象,拆分为『服务』。有了服务之后,SOA 还为服务之间的通信定义了标准,保证各个服务之间通讯体验的一致性。

优点:

  • 各服务的职责更清晰
  • 运维粒度减小到服务,爆炸半径可控

缺点:

  • ESB (企业服务总线) 往往需要一整套解决方案

微服务

在 SOA 架构中,ESB 起到了至关重要的作用。但从架构拓扑来看,它更像是一个集中式的模块。有一个 SOA 分布式演进的分支,最终的形态便是微服务。

优点:

  • 兼具 SOA 解决的问题
  • 服务间的通信更敏捷、灵活

缺点:

  • 运维成本
  • 架构演进的初衷:满足软件迭代诉求,提高迭代效率
  • 架构演进的思路:垂直切分——分布式,水平切分——分层/模块化

企业级后端架构剖析

云计算

云计算基础:

  • 虚拟化技术(整租或者合租)

    • 硬件层面(VM 虚拟机)- KVM/Xen/VMware
  • 操作系统层面(Container 容器)- LCX/Docker/Kata Container
  • 网络层面 - Linux Bridge/Open v Switch
  • 编排方案(业主或者租赁平台)

    • VM - OpenStack/VMWare Workstation
  • Container - Kubernetes/Docker Swarm

云计算架构:

  • 云服务

    • IaaS - 云基础设施,对底层硬件资源池的抽象(买房子还是房屋租赁平台)
  • PaaS - 基于资源池抽象,对上层提供的弹性资源平台(清包还是全包)
  • SaaS - 基于弹性资源平台构建的云服务(从零培训还是雇佣培训过的师傅)
  • FaaS - 更轻量级的函数服务。好比 LeetCode 等 OJ,刷题时只需要实现函数,不需要关注输入输出流(纯手工还是蛋糕批量生产)
  • 云部署模式(拓展)

    • 私有云 - 企业自用
  • 公有云 - AWS/Azure/Google Cloud/Huawei
  • 混合云

云原生

云原生,实际是云原生(计算)的简称,它是元计算发展到现在的一种形态。

云原生技术为组织(公司)在公有云、自由云、混合云等新型的动态环境中,构建和运行可弹性拓展的应用提供了可能。 它的代表技术:

  • 弹性资源
  • 微服务架构
  • DevOps
  • 服务网格

弹性资源

基于虚拟化技术,提供的可以快速扩缩容的能力。可以分为弹性计算资源弹性存储资源两个方面。

弹性计算资源:

  • 计算资源调度

    • 在线计算 - 互联网后端服务
  • 离线计算 - 大数据分析。Map-Reduce/Spark/Flinnk
  • 消息队列

    • 在线队列 - 削峰、解耦
  • 离线队列 - 结合数据分析的一整套方案,如 ELK

弹性存储资源:

  • 经典存储

    • 对象存储 - 视频、图片等。结合 CDN 等技术,可以为应用提供丰富的多媒体能力
  • 大数据存储 - 应用日志、用户数据等。结合数据挖掘、机器学习等技术,提高应用的体验
  • 关系型数据库
  • 元数据

    • 服务发现
  • NoSQL

    • KV 存储 - Redis
  • 文档存储 - Mongo

将存储资源当成服务一样

DevOps

DevOps是云原生时代软件交付的利器,贯穿整个软件开发周期

微服务架构

通信标准

  • HTTP(RESTful API)
  • RPC(Thrif,gRPC)

如何在 HTTP 和 RPC 之间选择?

  • 性能 - RPC 协议往往具备较好的压缩率,性能较高。如 Thrift, Protocol Buffers
  • 服务治理 - RPC 中间件往往集成了丰富的服务治理能力。如 熔断、降级、超时等
  • 可解释性 - HTTP 通信的协议往往首选 JSON,可解释性、可调试性更好

云原生场景下,微服务大可不必在业务逻辑中实现符合通信标准的交互逻辑,而是交给框架来做

服务网格

什么是服务网格?

  • 微服务之间通讯的中间层
  • 一个高性能的 4 层网络代理
  • 将流量层面的逻辑与业务进程解耦

没有什么是加一层代理解决不了的问题,服务网格相比较于 RPC/HTTP 框架:

  • 实现了异构系统治理体验的统一化
  • 服务网格的数据平面代理与业务进程采取进程间通信的模式,使得流量相关的逻辑(包含治理)与业务进程解耦,生命周期也更容易管理

企业级后端架构的挑战

挑战

基础设施层面:

  • 物理资源是有限的比如机器和宽带
  • 资源利用率受制于部署服务

用户层面:

  • 网络通信开销较大
  • 网络抖动导致运维成本提高
  • 异构环境下,不同实例资源水位不均

离在线资源并池

考虑到在线业务的潮汐性,物理资源的用量不是一成不变的。离在线资源并池,可以:

  • 提高物理资源利用率
  • 提供更多的弹性资源

自动扩缩容

核心收益:降低业务成本

利用在线业务潮汐性自动扩缩容

微服务亲合性部署

微服务之间的通信成本较高,是否可以:

  • 形态上是微服务架构
  • 通信上是单体架构

亲合性部署,通过将微服务调用形态与资源调度系统结合,将一些调用关系紧密、通信量大的服务部署在同一个机器上,并且使用 IPC 代替 RPC 的方式,降低网络通信带来的开销