这是我参与「第三届青训营 -后端场」笔记创作活动的第4篇笔记
排序的定义:对一序列对象根据某个关键字进行排序。
相关概念的说明
- 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
- 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
- 内排序:所有排序操作都在内存中完成;
- 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
- 时间复杂度: 一个算法执行所耗费的时间。
- 空间复杂度:运行完一个程序所需内存的大小。
常见的排序算法
常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。
冒泡排序
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
算法的工作原理:
比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个.
时间复杂度分析: 最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)
选择排序
表现最稳定的排序算法之一,因为无论什么数据进去都是 O(n2) 的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。
算法的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推.
时间复杂度分析:最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)
插入排序
工作原理: 从第一个元素开始,该元素可以认为已经被排序; 取出下一个元素,在已经排序的元素序列中从后向前扫描; 如果该元素(已排序)大于新元素,将该元素移到下一位置; 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置; 将新元素插入到该位置后;不断重复此操作.
时间复杂度分析:最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)
希尔排序
希尔排序是一种插入排序,同时该算法是冲破 O(n2)的第一批算法之一它与插入排序的不同之处在于,它会优先比较距离较远的元素。
工作原理: 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1; 按增量序列个数 k,对序列进行 k 趟排序; 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
时间复杂度分析:最佳情况:T(n) = O(nlog2 n) 最坏情况:T(n) = O(nlog2 n) 平均情况:T(n) =O(nlog2n)
归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。
工作原理: 把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。
时间复杂度分析:最佳情况:T(n) = O(n) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)
快速排序
工作原理: 从数列中挑出一个元素,称为 基准; 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区操作; 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。
时间复杂度分析:最佳情况:T(n) = O(nlogn) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(nlogn)
堆排序
工作原理: 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区; 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n]; 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
时间复杂度分析:最佳情况:T(n) = O(nlogn) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)
桶排序
工作原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序.
时间复杂度分析:最佳情况:T(n) = O(n+k) 最差情况:T(n) = O(n+k) 平均情况:T(n) = O(n2)
基数排序
工作原理: 取得数组中的最大数,并取得位数; arr为原始数组,从最低位开始取每个位组成radix数组; 对radix进行计数排序.
时间复杂度分析:最佳情况:T(n) = O(n * k) 最差情况:T(n) = O(n * k) 平均情况:T(n) = O(n * k)