持续创作,加速成长!这是我参与「掘金日新计划 · 6 月更文挑战」的第15天,点击查看活动详情
赫夫曼树概述
HuffmanTree因为翻译不同所以有其他的名字:赫夫曼树、霍夫曼树、哈夫曼树
赫夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1L1+W2L2+W3L3+...+WnLn),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明赫夫曼树的WPL是最小的。
定义
路径: 路径是指从一个节点到另一个节点的分支序列。
路径长度: 指从一个节点到另一个结点所经过的分支数目。 如下图:从根节点到a的分支数目为2
树的路径长度: 树中所有结点的路径长度之和为树的路径长度PL。 如下图:PL为10
节点的权: 给树的每个结点赋予一个具有某种实际意义的实数,我们称该实数为这个结点的权。如下图:7、5、2、4
带权路径长度: 从树根到某一结点的路径长度与该节点的权的乘积,叫做该结点的带权路径长度。如下图:A的带权路径长度为2*7=14
树的带权路径长度(WPL): 树的带权路径长度为树中所有叶子节点的带权路径长度之和
最优二叉树:权值最大的节点离跟节点越近的二叉树,所得WPL值最小,就是最优二叉树。如下图:(b)
- (a)
WPL=9*2+4*2+5*2+2*2=40 - (b)
WPL=9*1+5*2+4*3+2*3=37 - (c)
WPL=4*1+2*2+5*3+9*3=50