题目: 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符 题目链接
我的JavaScript解法
- 解法一: 备忘录动态规划
var minDistance = function(word1, word2) {
const m = word1.length;
const n = word2.length;
let memo = new Array();
for(let i = 0; i < m; i++)
memo[i] = new Array(n).fill(-1);
return dp(word1, m-1, word2, n-1, memo);
};
const dp = (word1, i, word2, j, memo) => {
if (i == -1) return j+1;
if (j == -1) return i+1;
if (memo[i][j] != -1)
return memo[i][j];
if (word1[i] == word2[j]) {
memo[i][j] = dp(word1, i - 1, word2, j - 1, memo);
} else {
memo[i][j] = Math.min(
dp(word1, i, word2, j - 1, memo) + 1,
dp(word1, i - 1, word2, j, memo) + 1,
dp(word1, i - 1, word2, j - 1, memo) + 1
);
}
return memo[i][j];
}
- 解法二: DP table动态规划
/**
* @param {string} word1
* @param {string} word2
* @return {number}
*/
var minDistance = function(word1, word2) {
const m = word1.length;
const n = word2.length;
let dp = new Array(m+1);
for(let i = 0; i <= m; i++)
dp[i] = new Array(n+1).fill(0);
for(let i = 1; i<=m; i++)
dp[i][0] = i;
for(let j = 1; j<=n; j++)
dp[0][j] = j;
for(let i = 1; i<=m; i++)
for(let j = 1; j<=n; j++) {
if(word1[i-1] == word2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1]+1, dp[i-1][j-1]+1);
}
return dp[m][n];
}