【MySQL_08】聚合函数

106 阅读8分钟

我们上一章讲到了 SQL 单行函数。实际上 SQL 函数还有一类,叫做聚合(或聚集、分组)函数,它是对 一组数据进行汇总的函数,输入的是一组数据的集合,输出的是单个值。

1. 聚合函数介绍

什么是聚合函数? 聚合函数作用于一组数据,并对一组数据返回一个值。 image.png 聚合函数类型

  • AVG()
  • SUM()
  • MAX()
  • MIN()
  • COUNT()

聚合函数语法 image.png 聚合函数不能嵌套调用。比如不能出现类似“AVG(SUM(字段名称))”形式的调用。

1.1 AVG和SUM函数

可以对 数值型数据 使用AVG 和 SUM 函数。

mysql> SELECT AVG(salary), MAX(salary),MIN(salary), SUM(salary)
    -> FROM   employees
    -> WHERE  job_id LIKE '%REP%';
+--------------+-------------+-------------+-------------+
| AVG(salary)  | MAX(salary) | MIN(salary) | SUM(salary) |
+--------------+-------------+-------------+-------------+
| 16127.112424 |    22410.26 |    11692.31 |   532194.71 |
+--------------+-------------+-------------+-------------+

1.2 MIN和MAX函数

可以对 任意数据类型 的数据使用 MIN 和 MAX 函数。

mysql> SELECT MIN(hire_date), MAX(hire_date)
    -> FROM      employees;
+----------------+----------------+
| MIN(hire_date) | MAX(hire_date) |
+----------------+----------------+
| 1987-06-17     | 2000-04-21     |
+----------------+----------------+
1 row in set (0.01 sec)

1.3 COUNT函数

COUNT(*)返回表中记录总数,适用于 任意数据类型

mysql> SELECT COUNT(*)
    -> FROM      employees
    -> WHERE  department_id = 50;
+----------+
| COUNT(*) |
+----------+
|       45 |
+----------+
1 row in set (0.01 sec)

COUNT(expr) 返回expr不为空的记录总数。

mysql> SELECT COUNT(commission_pct)
    -> FROM   employees
    -> WHERE  department_id = 50;
+-----------------------+
| COUNT(commission_pct) |
+-----------------------+
|                     0 |
+-----------------------+
1 row in set (0.00 sec)

问题:用count(*),count(1),count(列名)谁好呢? 其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。 Innodb引擎的表用count(*),count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。 但好于具体的count(列名)。

问题:能不能使用count(列名)替换count(*)? 不要使用 count(列名)来替代 count() , count() 是 SQL92 定义的标准统计行数的语法,跟数 据库无关,跟 NULL 和非 NULL 无关。 说明:count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。

2. GROUP BY

2.1 基本使用

image.png 可以使用GROUP BY子句将表中的数据分成若干组

SELECT column, group_function(column)
FROM table
[WHERE  condition]
[GROUP BY   group_by_expression]
[ORDER BY   column];

明确:WHERE一定放在FROM后面 在SELECT列表中所有未包含在组函数中的列都应该包含在 GROUP BY子句中

mysql> SELECT   department_id, AVG(salary)
    -> FROM     employees
    -> GROUP BY department_id ;
+---------------+--------------+
| department_id | AVG(salary)  |
+---------------+--------------+
|          NULL | 13641.020000 |
|            10 |  8574.350000 |
|            20 | 18512.815000 |
|            30 |  8087.178333 |
|            40 | 12666.670000 |
|            50 |  6772.874889 |
|            60 | 12861.538000 |
|            70 | 19487.170000 |
|            80 | 17458.213529 |
|            90 | 37675.196667 |
|           100 | 16758.968333 |
|           110 | 19779.475000 |
+---------------+--------------+
12 rows in set (0.04 sec)

包含在 GROUP BY 子句中的列不必包含在SELECT 列表中

mysql> SELECT   AVG(salary)
    -> FROM     employees
    -> GROUP BY department_id ;
+--------------+
| AVG(salary)  |
+--------------+
| 13641.020000 |
|  8574.350000 |
| 18512.815000 |
|  8087.178333 |
| 12666.670000 |
|  6772.874889 |
| 12861.538000 |
| 19487.170000 |
| 17458.213529 |
| 37675.196667 |
| 16758.968333 |
| 19779.475000 |
+--------------+
12 rows in set (0.00 sec)

2.2 使用多个列分组

image.png

mysql> SELECT   department_id dept_id, job_id, SUM(salary)
-> FROM     employees
-> GROUP BY department_id, job_id ;
+---------+------------+-------------+
| dept_id | job_id     | SUM(salary) |
+---------+------------+-------------+
|      90 | AD_PRES    |    46769.21 |
|      90 | AD_VP      |    66256.38 |
|      60 | IT_PROG    |    64307.69 |
|     100 | FI_MGR     |    23384.60 |
|     100 | FI_ACCOUNT |    77169.21 |
|      30 | PU_MAN     |    21435.89 |
|      30 | PU_CLERK   |    27087.18 |
|      50 | ST_MAN     |    70933.32 |
|      50 | ST_CLERK   |   108543.55 |
|      80 | SA_MAN     |   118871.72 |
|      80 | SA_REP     |   474707.54 |
|    NULL | SA_REP     |    13641.02 |
|      50 | SH_CLERK   |   125302.50 |
|      10 | AD_ASST    |     8574.35 |
|      20 | MK_MAN     |    25333.32 |
|      20 | MK_REP     |    11692.31 |
|      40 | HR_REP     |    12666.67 |
|      70 | PR_REP     |    19487.17 |
|     110 | AC_MGR     |    23384.60 |
|     110 | AC_ACCOUNT |    16174.35 |
+---------+------------+-------------+
20 rows in set (0.00 sec)

2.3 GROUP BY中使用WITH ROLLUP

使用WITH ROLLUP关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所 有记录的总和,即统计记录数量。

SELECT department_id,AVG(salary)
FROM employees
WHERE department_id > 80
GROUP BY department_id WITH ROLLUP;

注意: 当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。

3. HAVING

3.1 基本使用

image.png 过滤分组:HAVING子句

  1. 行已经被分组。
  2. 使用了聚合函数。
  3. 满足HAVING 子句中条件的分组将被显示。
  4. HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。 image.png
mysql> SELECT   department_id, MAX(salary)
-> FROM     employees
-> GROUP BY department_id
-> HAVING   MAX(salary)>10000 ;
+---------------+-------------+
| department_id | MAX(salary) |
+---------------+-------------+
|          NULL |    13641.02 |
|            20 |    25333.32 |
|            30 |    21435.89 |
|            40 |    12666.67 |
|            50 |    15979.48 |
|            60 |    17538.46 |
|            70 |    19487.17 |
|            80 |    27282.03 |
|            90 |    46769.21 |
|           100 |    23384.60 |
|           110 |    23384.60 |
+---------------+-------------+
11 rows in set (0.00 sec)

非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数。 如下:

mysql> SELECT   department_id, AVG(salary)
    -> FROM     employees
    -> WHERE    AVG(salary) > 8000
    -> GROUP BY department_id;
ERROR 1111 (HY000): Invalid use of group function

3.2 WHERE和HAVING的对比

区别 1 :WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件; HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。

这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。另外,WHERE排除的记录不再包括在分组中。

区别 2 :如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。

这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。

小结如下: image.png 开发中的选择: WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。

4. SELECT的执行过程

4.1 查询的结构

#方式1SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...

#方式2SELECT ...,....,...
FROM ... JOIN ... 
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...

#其中:
#(1from:从哪些表中筛选
#(2on:关联多表查询时,去除笛卡尔积
#(3where:从表中筛选的条件
#(4group by:分组依据
#(5)having:在统计结果中再次筛选
#(6order by:排序
#(7)limit:分页

4.2 SELECT执行顺序

你需要记住 SELECT 查询时的两个顺序: 1. 关键字的顺序是不能颠倒的:

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...

2 .**SELECT 语句的执行顺序 **(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):

FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT

image.png 比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:

SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7

在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个虚拟表,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。

4.3 SQL 的执行原理

SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:

  1. 首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;
  2. 通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;
  3. 添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。 当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。

当我们拿到了查询数据表的原始数据,也就是最终的虚拟表 vt1,就可以在此基础上再进行 WHERE 阶段。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表 vt2。 然后进入第三步和第四步,也就是 GROUP 和 HAVING 阶段。在这个阶段中,实际上是在虚拟表 vt2 的基础上进行分组和分组过滤,得到中间的虚拟表 vt3 和 vt4。 当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 SELECT 和 DISTINCT阶段。 首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表vt5- 1 和 vt5- 2 。 当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 ORDER BY 阶段,得到虚拟表 vt6。 最后在 vt6 的基础上,取出指定行的记录,也就是 LIMIT 阶段,得到最终的结果,对应的是虚拟表vt7。 当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。 同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的关键字顺序, 所谓底层运行的原理,就是我们刚才讲到的执行顺序。