机器学习(3)——Kmeans

230 阅读2分钟

前言

本文已参与「新人创作礼」活动,一起开启掘金创作之路。聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇)。比如在商业中,如果我们手头有大量的当前和潜在客户的信息,我们可以使用聚类将客户划分为若干组,以便进一步分析和开展营销活动,最有名的客户价值判断模型RFM,就常常和聚类分析共同使用。再比如,聚类可以用于降维和矢量量化(vector quantization),可以将高维特征压缩到一列当中,常常用于图像,声音,视频等非结构化数据,可以大幅度压缩数据量。 kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数).

python实现kmeans

import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 计算欧拉距离
def calcDis(dataSet, centroids, k):
    clalist=[]
    for data in dataSet:
        diff = np.tile(data, (k, 1)) - centroids  #相减   (np.tile(a,(2,1))就是把a先沿x轴复制1倍,即没有复制,仍然是 [0,1,2]。 再把结果沿y方向复制2倍得到array([[0,1,2],[0,1,2]]))
        squaredDiff = diff ** 2     #平方
        squaredDist = np.sum(squaredDiff, axis=1)   #和  (axis=1表示行)
        distance = squaredDist ** 0.5  #开根号
        clalist.append(distance) 
    clalist = np.array(clalist)  #返回一个每个点到质点的距离len(dateSet)*k的数组
    return clalist

# 计算质心
def classify(dataSet, centroids, k):
    # 计算样本到质心的距离
    clalist = calcDis(dataSet, centroids, k)
    # 分组并计算新的质心
    minDistIndices = np.argmin(clalist, axis=1)    #axis=1 表示求出每行的最小值的下标
    newCentroids = pd.DataFrame(dataSet).groupby(minDistIndices).mean() #DataFramte(dataSet)对DataSet分组,groupby(min)按照min进行统计分类,mean()对分类结果求均值
    newCentroids = newCentroids.values

# 计算变化量
changed = newCentroids - centroids

return changed, newCentroids

# 使用k-means分类
def kmeans(dataSet, k):
    # 随机取质心
    centroids = random.sample(dataSet, k)

    # 更新质心 直到变化量全为0
    changed, newCentroids = classify(dataSet, centroids, k)
    while np.any(changed != 0):
        changed, newCentroids = classify(dataSet, newCentroids, k)

    centroids = sorted(newCentroids.tolist())   #tolist()将矩阵转换成列表 sorted()排序

 # 根据质心计算每个集群
cluster = []
clalist = calcDis(dataSet, centroids, k) #调用欧拉距离
minDistIndices = np.argmin(clalist, axis=1)  
for i in range(k):
    cluster.append([])
for i, j in enumerate(minDistIndices):   #enymerate()可同时遍历索引和遍历元素
    cluster[j].append(dataSet[i])
    
return centroids, cluster

# 创建数据集
def createDataSet():
    return [[1, 1], [1, 2], [2, 1], [6, 4], [6, 3], [5, 4]]

if __name__=='__main__': 
    dataset = createDataSet()
    centroids, cluster = kmeans(dataset, 2)
    print('质心为:%s' % centroids)
    print('集群为:%s' % cluster)
    for i in range(len(dataset)):
      plt.scatter(dataset[i][0],dataset[i][1], marker = 'o',color = 'green', s = 40 ,label = '原始点')
                                                #  记号形状       颜色      点的大小      设置标签
  for j in range(len(centroids)):
    plt.scatter(centroids[j][0],centroids[j][1],marker='x',color='red',s=50,label='质心')
    plt.show()