持续创作,加速成长!这是我参与「掘金日新计划 · 6 月更文挑战」的第5天,点击查看活动详情
在此案例中,我们使用学生成绩实现分区功能(第三列为成绩):
- 将原始数据上传至HDFS
[root@hadoop01 test_data]# hdfs dfs -mkdir /test_partition_input
[root@hadoop01 test_data]# hdfs dfs -put test_partiton.csv /test_partition_input
新建project:
- 引入pom依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>wyh.test</groupId>
<artifactId>test_partition</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<packaging>jar</packaging>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<minimizeJar>true</minimizeJar>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
- 创建自定义Mapper类
package wyh.test.partition;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* 四个泛型,分别是K1,V1,K2,V2的类型(要分区的字段必须包含在K2里),这里我们可以暂时将V2置空
*/
public class PartitionMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
/**
* map(...)用于将K1,V1转为K2,V2,在我们的案例中,K2直接使用V1的值即可。
* K1为行偏移量,V1为行数据
* K2为V1的值,也即行数据
* V2置空
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value, NullWritable.get());//NullWritable.get()需要使用get()方法拿到NullWritable对应的对象
}
}
- 创建自定义Partitioner
package wyh.test.partition;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
/**
* 两个泛型依次对应K2,V2的类型
*/
public class PartitionPartitioner extends Partitioner<Text, NullWritable> {
/**
* 该方法用于定义分区的具体规则,并返回分区的编号
* @param text - K2
* @param nullWritable - V2
* @param i - 分区个数
* @return
*/
@Override
public int getPartition(Text text, NullWritable nullWritable, int i) {
//获取原始行数据,并截取成绩值
String[] split = text.toString().split(",");
String gradeString = split[2];
int grade=Integer.parseInt(gradeString);
//定义分区规则
if(grade > 90){
return 1;//返回分区编号
}else{
return 0;
}
}
}
- 自定义Reducer类
package wyh.test.partition;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* 四个泛型依次为K2,V2,K3,V3的类型
* K2 - 行数据
* V2 - 置空
* K3 - 行数据(在我们的案例中此处的Reduce中不需要对数据进行处理),直接将数据进行传递即可。
* V3 - 置空
*/
public class PartitionReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(key, NullWritable.get());
}
}
- 创建主类
package wyh.test.partition;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class PartitionJobMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "test_partition_job");
//集群中必须配置
job.setJarByClass(PartitionJobMain.class);
//配置输入项
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job, new Path("hdfs://192.168.126.132:8020/test_partition_input"));
//配置Map
job.setMapperClass(PartitionMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
//配置分区
job.setPartitionerClass(PartitionPartitioner.class);
//配置Reduce
job.setReducerClass(PartitionReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("hdfs://192.168.126.132/test_partition_output"));
//设置Reduce Task个数(默认是1),Reduce Task个数也即分区个数
job.setNumReduceTasks(2);
//等待job执行状态返回值
boolean status = job.waitForCompletion(true);
//三目运算的结果会引用到main()方法里的runStatus
return status?0:1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
//启动job,返回任务执行状态
int runStatus = ToolRunner.run(configuration, new PartitionJobMain(), args);
System.exit(runStatus);
}
}
- 打包
先clean,清除编译过程中产生的中间文件,然后package进行打包:
- 将打好的jar包上传至服务器
- 执行jar
[root@hadoop01 test_jar]# hadoop jar test_partition-1.0-SNAPSHOT.jar wyh.test.partition.PartitionJobMain
#最后面的值是主类的全路径
- 查看目录树结构
由于我们设置的是两个分区,所以这里就会生成两个分区文件:
- 查看分区结果
在PartitionPartitioner类中我们指定了成绩大于90的进入1号分区,否则进入0号分区:
所以查看分区文件中0号文件得到的就是成绩<=90的所有学生信息:
查看分区文件中1号文件得到的就是成绩>90的所有学生信息:
这样就简单地实现了MapReduce中分区的功能。