联合学习的攻击面:分类法、网络防御、挑战和未来方向

240 阅读19分钟

联合学习攻击面:分类法、网络防御、挑战和未来方向

人工智能评论55卷,第 3569-3606页(2022)引用此文

摘要

在隐私保护限制的背景下,联合学习(FL)得到了大量的研究关注。通过联合训练深度学习模型,在受邀参与者的帮助下可以胜任各种训练任务。然而,FL涉及到大量涉及隐私和安全方面的攻击。本文展示了一个联合学习的工作流程,以及恶意客户端如何利用FL系统的漏洞来攻击系统。对现有的关于联合学习攻击面的分类法和分类的研究进行了系统的调查。与FL攻击面一样,攻击者损害了安全、隐私,获得了自由激励,并滥用了保密性、完整性和可用性(CIA)安全三要素。此外,阐述了针对FL攻击的最先进的防御方法,这有助于保护和减少攻击的可能性。解释了隐私攻击的FL模型和工具,以及它们的最佳方面和缺点。最后,讨论了技术挑战和可能的研究指导方针,作为建立强大的FL系统的未来工作。

这是对订阅内容的预览,通过您的机构访问

访问选项

购买单篇文章

即时访问完整的文章PDF。

39.95美元

价格包括增值税(美国)
税收计算将在结账时最终确定。

通过DeepDyve租用此文章。

了解更多关于机构订阅的信息

图1

图2

图3

图4

图 5

图 6

图 7

图 8

图 9

图10

参考文献

  • Araki T, Furukawa J, Lindell Y, Nof A, Ohara K (2016) 带有诚实多数的高吞吐量半诚实安全三方计算。在2016年ACM SIGSAC计算机和通信安全会议的论文集中。ACM,doi.org/10.1145/297…

  • Ács G, Castelluccia C (2011) I have a DREAM!(DiffeRentially privatE smArt metering)。在信息隐藏中,第118-132页。Springer Berlin Heidelberg,doi.org/10.1007/978…

  • Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V (2020) How to backdoor federated learning.在国际人工智能和统计会议上,第2938-2948页。PMLR

  • Baruch M, Baruch G, Goldberg Y (2019) A little is enough:arXiv preprintarXiv:1902.06156

  • Berlioz A, Friedman A, Kaafar MA, Boreli R, Berkovsky S (2015) Applying differential privacy to matrix factorization.在第九届ACM推荐系统会议论文集中。ACM,doi.org/10.1145/279…

  • Bertino E (2021) Attacks on artificial intelligence [last word].IEEE Secur Privacy 19(1):103-104

    文章 谷歌学者

  • Bhagoji AN, Chakraborty S, Mittal P, Calo S (2019) 通过对抗性视角分析联合学习。InInternational Conference on Machine Learning, pp 634-643.PMLR

  • Bhowmick A, Duchi J, Freudiger J, Kapoor G, Rogers R (2018) Protection against reconstruction and its applications in private federated learning. arXiv preprintarXiv: 1812.00984

  • Blanchard P, Mhamdi EM, Guerraoui R, Stainer J (2017) 有对手的机器学习。拜占庭容忍的梯度下降。第31届国际神经信息处理系统会议论文集,第118-128页

  • Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, von Arx S, Bernstein MS, Bohg J, Bosselut A, Brunskill E, Brynjolfsson E et al. (2021) On the opportunities and risks of foundation models.arXivpreprintarXiv:2108.07258

  • Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K (2016) Practical secure aggregation for federated learning on user-held data. arXiv preprintarXiv:1611.04482

  • Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K (2017) Practical secure aggregation for privacy-reserving machine learning.In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.ACM.doi.org/10.1145/313…

  • CPRA(2020)加州隐私权法案,www.caprivacy.org/

  • Caldas S, Duddu Sai MK, Wu P, Li T, Konečnỳ J, McMahan HB, Smith V, Talwalkar A (2018) Leaf:arXiv预印本arXiv:1812.01097,是联合设置的基准。

  • Cao X, Fang M, Liu J, Gong NZ (2020) Fltrust:arXiv预印本arXiv:2012.13995,通过信任引导的拜占庭-稳健联盟学习。

  • Chai D, Wang L, Chen K, Yang Q (2020) Secure federated matrix factorization.IEEE智能系统,doi.org/10.1109/mis…

  • Chen Y, Luo F, Li T, Xiang T, Liu Z, Li J (2020) 一个具有可信执行环境的训练完整性隐私保护的联合学习方案。Inf Sci 522:69-79.doi.org/10.1016/j.i…

    文章来源:谷歌学者

  • Chen Y, Qin X, Wang J, Chaohui Yu, Gao W (2020) FedHealth:一个用于可穿戴医疗的联合转移学习框架。IEEE Intell Syst 35(4):83-93.doi.org/10.1109/mis…

    文章来源:谷歌学者

  • Chen J, Zhang J, Zhao Y, Han H, Zhu K, Chen B (2020) Beyond model-level membership privacy leakage: an adversarial approach in federated learning.In 2020 29th International Conference on Computer Communications and Networks (ICCCN).IEEE,doi.org/10.1109/icc…

  • Cheng Y, Liu Y, Chen T, Yang Q (2020) Federated learning for privacy-preserving AI.Commun ACM 63(12):33-36.doi.org/10.1145/338…

    文章来源:谷歌学者

  • Cheng K, Fan T, Jin Y, Liu Y, Chen T, Papadopoulos D, Yang Q (2019) Secureboost:arXiv预印本arXiv:1901.08755

  • Chik WB (2013) The singapore personal data protection act and an assessment of future trends in data privacy reform.Comput Law Secur Rev 29(5):554-575.doi.org/10.1016/j.c…

    文章 谷歌学者

  • Cohen G, Afshar S, Tapson J, Van Schaik A (2017) Emnist:将Mnist扩展到手写字母。In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2921-2926.IEEE

  • 开发人员TensorFlow(2021)Tensorflow。https://doi.org/10.5281/ZENODO.4724125

  • Dua D,Graff C(2017)机器学习库,网址:http://archive.ics.uci.edu/ml/index.php

  • El Mhamdi EM, Guerraoui R, Rouault SL (2018) byzantium中分布式学习的隐藏漏洞。arXiv preprintarXiv:1802.07927

  • FATE (2021) 一个工业化的分级联盟学习框架,URL:fate.fedai.org/

  • Fang M, Cao J, Jia J, Gong N (2020) 对byzantine-robust federated learning的局部模型中毒攻击。In 29th USENIX Security Symposium (USENIX Security 20), pp 1605-1622

  • FeatureCloud (2021) 用联合学习改造医疗保健和医学研究,网址:https://featurecloud.eu/about/our-vision/

  • FedAI (2020) Webank和瑞士重新签署合作备忘录,网址:https://www.fedai.org/news/webank-and-swiss-re-signed-cooperation-mou/

  • Feldman M, Papadimitriou C, Chuang J, Stoica I (2006) Free-riding and whitewashing in peer-to-peer systems.IEEE J Sel Areas Commun 24(5):1010-1019。https://doi.org/10.1109/jsac.2006.872882

    文章来源:谷歌学者

  • Fernandes K, Vinagre P, Cortez P (2015) 用于预测在线新闻流行度的主动式智能决策支持系统。In Progress in Artificial Intelligence, pages 535-546.Springer国际出版公司,doi.org/10.1007/978…

  • Fraboni Y, Vidal R, Lorenzi M (2021) Fre-rider attacks on model aggregation in federated learning.在国际人工智能和统计会议上,第1846-1854页。PMLR

  • Fredrikson M, Jha S, Ristenpart T (2015) 利用信心信息的模型反转攻击和基本对策。In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.ACM.doi.org/10.1145/281…

  • Fu S, Xie C, Li B, Chen Q (2019) 抗攻击的基于残差的联合学习. arXiv preprintarXiv:1912.11464

  • Fung C, Yoon CJM, Beschastnikh I (2020) The limitations of federated learning in sybil settings.在第23届攻击、入侵和防御研究国际研讨会(\(\{\)RAID\(\}\)*2020)*上,第301-316页

  • Fung C, Yoon CJ, Beschastnikh I (2018) Mitigating sybils in federated learning poisoning. arXiv preprintarXiv: 1808.04866

  • Geyer Robin C, Klein Tassilo, Nabi Moin (2017) Differentially private federated learning:arxiv preprintarXiv:1712.07557

  • Goodfellow IJ, Erhan D, Carrier PL, Courville A, Mirza M, Hamner B, Cukierski W, Tang Y, Thaler D, Lee DH, Zhou Y et al. (2013) Challenges in representation learning:三个机器学习竞赛的报告。在国际神经信息处理会议上,第117-124页。Springer

  • Google BigQuery (2017) Reddit数据集,网址:https://www.reddit.com/r/bigquery/wiki/datasets

  • Guowen X, Li H, Liu S, Yang K, Lin X (2020) VerifyNet:安全和可验证的联合学习。IEEE Trans Inf Forensics Secur 15:911-926.doi.org/10.1109/tif…

    文章来源:谷歌学者

  • Hahn SJ, Lee J (2020) Graffl:无梯度的贝叶斯生成模型联合学习。 arXiv预印本arXiv:2008.12925

  • Hardy S, Henecka W, Ivey-Law H, Nock R, Patrini G, Smith G, Thorne B (2017) 通过实体解析和加法同态加密在垂直分割的数据上进行私有联合学习。 arXiv preprintarXiv:1711.10677

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition.在IEEE计算机视觉和模式识别会议论文集中,第770-778页

  • He Z, Zhang T, Lee RB (2019) Model inversion attacks against collaborative inference.In Proceedings of the 35th Annual Computer Security Applications Conference.ACM,doi.org/10.1145/335…

  • Hitaj B, Ateniese G, Perez-Cruz F (2017) GAN下的深度模型。In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.ACM,doi.org/10.1145/313…

  • House W (2012) 网络化世界中的消费者数据隐私。在全球数字经济中保护隐私和促进创新的框架。白宫,华盛顿特区,第1-62页

    谷歌学者

  • Huang W, Li T, Wang D, Du S, Zhang J (2020) Fairness and accuracy in federated learning. arXiv preprintarXiv:2012.10069

  • Huang L, Joseph AD, Nelson B, Rubinstein BIP, Tygar JD (2011) Adversarial machine learning.在第四届ACM安全与人工智能研讨会论文集--AISec '11。ACM出版社,doi.org/10.1145/204…

  • Jie X, Glicksberg BS, Chang S, Walker P, Bian J, Wang F (2020) Federated learning for healthcare informatics.J Healthcare Informatics Res 5(1):1-19.doi.org/10.1007/s41…

    文章来源:谷歌学术

  • Kaggle (2013) Acquire valued shoppers challenge, URL:www.kaggle.com/c/acquire-v…

  • Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles Z, Cormode G, Cummings R et al. (2019) Advances and open problems in federated learning.arXivpreprintarXiv: 1912.04977

  • Kang J, Xiong Z, Niyato D, Yu H, Liang YC, Kim DI (2019) Incentive design for efficient federated learning in mobile networks:A contract theory approach.In 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS).IEEE,doi.org/10.1109/vts…

  • 康文迪。贷款俱乐部的贷款数据,2019年。URL:www.kaggle.com/wendykan/le…

  • Karimireddy SP, Jaggi M, Kale S, Mohri M, Reddi SJ, Stich SU, Suresh AT (2020) Mime:在联合学习中模仿集中式随机算法。 arXiv预印本arXiv:2008.03606

  • Khazbak Y, Tan T, Cao G (2020) MLGuard:在保护隐私的分布式协作学习中减轻中毒攻击。In 2020 29th International Conference on Computer Communications and Networks (ICCCN).IEEE,doi.org/10.1109/icc…

  • Kim S, Kim J, Koo D, Kim Y, Yoon H, Shin J (2016) Efficient privacy-reserving matrix factorization via full homomorphic encryption.在第11届ACM亚洲计算机和通信安全会议论文集上。ACM,doi.org/10.1145/289…

  • Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems.计算机42(8):30-37。https://doi.org/10.1109/mc.2009.263

    文章 谷歌学者

  • Krizhevsky Alex, Hinton Geoffrey, et al. (2009) Learning multiple layers of features from tiny images

  • Kuchler H (2019) Pharma groups combine to promote drug discovery with ai, URL:www.ft.com/content/ef7…

  • Lecun Y, Bottou L, Bengio Y, Haffner P (1998) 基于梯度的学习应用于文档识别。Proc IEEE 86(11):2278-2324.doi.org/10.1109/5.7…

    文章来源:谷歌学者

  • Li H, Ota K, Dong M (2018) 在边缘学习物联网。边缘计算的物联网深度学习。IEEE Network 32(1):96-101.doi.org/10.1109/mne…

    文章来源:谷歌学者

  • Li T, Sahu AK, Talwalkar A, Smith V (2020) IEEE Signal Process Mag.联合学习:挑战、方法和未来方向。37(3):50–60.doi.org/10.1109/msp…

    文章来源:谷歌学者

  • Li Z, Sharma V, Mohanty SP (2020) 通过联合学习保护数据隐私。挑战和解决方案。IEEE Consumer Electron Mag 9(3):8-16. https://doi.[org/10.1109/mce.2019.2959108](doi.org/10.1109/mce…)

    文章来源:谷歌学者

  • Li L, Wei X, Chen T, Giannakis GB, Ling Q (2019) RSA:用于从异质数据集进行分布式学习的拜占庭-鲁棒性随机聚合方法。Proceed AAAI Conf Artif Intell 33:1544-1551.doi.org/10.1609/aaa…

    文章来源:谷歌学者

  • Li Q, Zhu W, Wu C, Pan X, Yang F, Zhou Y, Zhang Y (2020) InvisibleFL:针对多媒体隐私泄露的非信息性中间更新的联合学习。在第28届ACM国际多媒体会议论文集中。ACM,doi.org/10.1145/339…

  • Li S, Cheng Y, Liu Y, Wang W, Chen T (2019) 联合学习中的异常客户端行为检测。 arXiv预印本arXiv:1910.09933

  • Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2018) Federated optimization in heterogeneous networks. arXiv preprintarXiv:1812.06127

  • Lim HK, Kim JB, Kim CM, Hwang GY, Choi HB, Han YH (2020) Federated reinforcement learning for controlling multiple rotary inverted pendulums in edge computing environments.在2020年信息和通信领域的人工智能国际会议(ICAIIC)上。IEEE.doi.org/10.1109/ica…

  • Lin J, Du M, Liu J (2019) Fre-riders in federated learning:攻击和防御。arXiv预印本arXiv:1911.12560

  • Lin Y, Han S, Mao H, Wang Y, Dally WJ (2017) Deep gradient compression:减少分布式训练的通信带宽。 arXiv preprintarXiv:1712.01887

  • Liu Y, Huang A, Luo Y, Huang H, Liu Y, Chen Y, Feng L, Chen T, Han Yu, Yang Q (2020) FedVision:一个由联合学习驱动的在线视觉物体检测平台。Proceed AAAI Conf Artif Intell 34(08):13172-13179.doi.org/10.1609/aaa…

    文章来源:谷歌学者

  • Liu Y, Kang Y, Xing C, Chen T, Yang Q (2020) A secure federated transfer learning framework.IEEE Intell Syst 35(4):70-82.doi.org/10.1109/mis…

    文章来源:谷歌学者

  • Long G, Tan Y, Jiang J, Zhang C (2020) 开放银行的联合学习。InLecture Notes in Computer Science, pages 240-254.斯普林格国际出版公司,doi.org/10.1007/978…

  • Luo X, Wu Y, Xiao X, Ooi BC (2020) 垂直联合学习中对模型预测的特征推理攻击. arXiv preprintarXiv:2010.10152

  • Luo X , Zhu X (2020) 在联合学习中利用对基于gan的特征推理攻击的防御措施。

  • Lyu L, Yu H, Ma X, Sun L, Zhao J, Yang Q, Yu PS (2020) Threats to federated learning.载于《计算机科学讲义》,第3-16页。Springer国际出版公司,doi.org/10.1007/978…

  • Ma C, Li J, Ding M, Yang HH, Shu F, Quek TQS, Vincent Poor H (2020) On safeguarding privacy and security in the framework of federated learning.IEEE网络34(4):242-248。https://doi.org/10.1109/mnet.001.1900506

    文章来源:谷歌学者

  • Ma Y, Zhu X, Hsu J (2019) Data poisoning against differentially-private learners:arXiv preprintarXiv:1903.09860

  • Mallah RA, Lopez D, Farooq B (2021) 通过行为证明对联合学习中的非目标中毒攻击进行检测。 arXiv preprintarXiv:2101.10904

  • McMahan HB, Ramage D, Talwar K, Zhang L (2017) Learning differentially private recurrent language models. arXiv preprintarXiv:1710.06963

  • McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) 从分散的数据中高效地学习深度网络的通信。在人工智能和统计学中,第1273-1282页。PMLR

  • McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2016) Federated learning of deep networks using model averaging.arXivpreprintarXiv: 1602.05629

  • Melis L, Song C, De Cristofaro E, Shmatikov V (2019) 在协作学习中利用非故意的特征泄漏。In 2019 IEEE Symposium on Security and Privacy (SP).IEEE,doi.org/10.1109/sp.…

  • Mo F, Haddadi H, Katevas K, Marin E, Perino D, Kourtellis N (2021) Ppfl:具有可信执行环境的隐私保护联合学习。 arXiv预印本arXiv:2104.14380

  • Moro S, Cortez P, Rita P (2014) 一个数据驱动的方法来预测银行电话营销的成功。Decis Support Syst 62:22-31.doi.org/10.1016/j.d…

    文章 谷歌学者

  • 火枪手.智能制造和医疗保健,2020年。URL:musketeer.eu/project/

  • Nadiger C, Kumar A, Abdelhak S (2019) Federated reinforcement learning for fast personalization.In 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE).IEEE,doi.org/10.1109/aik…

  • Naseri M, Hayes J, Emiliano DC (2020) Toward robustness and privacy in federated learning:arXiv预印本arXiv:2009.03561

  • Nasr M, Shokri R, Houmansadr A (2019) 深度学习的综合隐私分析。针对集中式和联合式学习的被动和主动白盒推理攻击。In 2019 IEEE Symposium on Security and Privacy (SP).IEEE.doi.org/10.1109/sp.…

  • Nguyen TD, Rieger P, Yalame H, Mollering H, Fereidooni H, Marchal S, Miettinen M, Mirhoseini A, Sadeghi AR, Schneider T等人(2021)Flguard。安全和私有的联合学习。arXiv预印本arXiv:2101.02281

  • Nilsson A, Smith S, Gustavsson E, Jirstrand M (2018) A performance evaluation of federated learning algorithms.In Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning.ACM,doi.org/10.1145/328…

  • Nishio T, Yonetani R (2019) Client selection for federated learning with heterogeneous resources in mobile edge.In ICC 2019 - 2019 IEEE International Conference on Communications (ICC).IEEE,doi.org/10.1109/icc…

  • Nock R, Hardy S, Henecka W, Ivey-Law H, Patrini G, Smith G, Thorne B (2018) Entity resolution and federated learning get a federated resolution. arXiv preprintarXiv: 1803.04035

  • OpenMined (2021) Let's solve privacy, URL:www.openmined.org/

  • 欧金。联合学习,2021年。URL:owkin.com/federated-l…

  • O'Driscoll A (2021) 30+数据泄露统计和事实,www.comparitech.com/blog/vpn-pr…

  • Paul V, von dem Axel B (2017) The EU General Data Protection Regulation (GDPR).斯普林格国际出版社,柏林。https://doi.org/10.1007/978-3-319-57959-7

    书籍 谷歌学者

  • Phong LT, Aono Y, Hayashi T, Wang L, Moriai S (2018) 通过加法同态加密保护隐私的深度学习。IEEE Trans Inf Forensics Secur 13(5):1333-1345.doi.org/10.1109/tif…

    文章来源:谷歌学者

  • Pustozerova A, Mayer R (2020) 联合学习中的信息泄露。在网络和分布式系统安全研讨会论文集上

  • Radanliev P, De Roure D (2021) Review of algorithms for artificial intelligence on low memory devices.IEEE Access 9:109986-109993

    文章 谷歌学者

  • Radanliev P, De Roure D, Burnap P, Santos O (2021) 用于分析复杂系统中不可控状态的认识论方程。量化来自物联网的网络风险。The Review of Socionetwork Strategies, pp 1-31

  • Richardson A, Filos-Ratsikas A, Faltings B (2019) Rewarding quality data via influence functions. arXiv preprintarXiv:1908.11598

  • Samarakoon S, Bennis M, Saad W, Debbah M (2020) Distributed federated learning for ultra-reliable lowlatency vehicle communications.IEEE Trans Commun 68(2):1146-1159.doi.org/10.1109/tco…

    文章来源:谷歌学者

  • Samaria FS, Harter AC (1994) 用于人脸识别的随机模型的参数化。In Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.IEEE Comput Soc Pressdoi.org/10.1109/acv…

  • Satariano A (2019) 根据欧洲的数据隐私法,谷歌被罚款5700万 URL:www.nytimes.com/2019/01/21/…

  • Sherpa.ai.(2021) 我们研究和建立人工智能技术和服务,URL:sherpa.ai/

  • Shokri R, Stronati M, Song C, Shmatikov V (2017) 针对机器学习模型的成员推理攻击。In 2017 IEEE Symposium on Security and Privacy (SP).IEEE

  • Smith SL, Kindermans PJ, Ying C, Le QV (2017) Don't decay the learning rate, increase the batch size. arXiv preprintarXiv: 1711.00489

  • So J, Guler B, Avestimehr AS (2020) Byzantine-resilient secure federated learning.IEEE J Sel Areas Commun.doi.org/10.1109/jsa…

    文章来源:谷歌学者

  • Song M, Wang Z, Zhang Z, Song Y, Wang Q, Ren J, Qi H (2019) Beyond inferring class representatives:来自联合学习的用户级隐私泄露。In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.IEEE,doi.org/10.1109/inf…

  • Stich SU (2018) Local sgd converges fast and communicates little. arXiv preprintarXiv:1805.09767

  • Subramanyan P, Sinha R, Lebedev I, Devadas S, Seshia SA (2017) A formal foundation for secure remote execution of enclaves.In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.ACM,doi.org/10.1145/313…

  • Sun Z, Kairouz P, Suresh AT, McMahan HB (2019) Can you really backdoor federated learning? arXiv preprintarXiv: 1911.07963

  • Tan K, Bremner D, Le Kernec J , Imran M (2020) 车辆网络中的联合机器学习。最近的应用总结。在2020年中英新兴技术国际会议(UCET)上。IEEE,doi.org/10.1109/uce…

  • Tolpegin V, Truex S, Gursoy ME, Liu L (2020) 针对联合学习系统的数据中毒攻击。在计算机安全 - ESORICS 2020,第480-501页。Springer国际出版公司。https://doi.org/10.1007/978-3-030-58951-6_24

  • Truex S, Liu L, Chow K-H, Gursoy ME, Wei W (2020) LDP-fed.在第三届ACM边缘系统、分析和网络国际研讨会的论文集中。ACM,doi.org/10.1145/337…

  • Truex S, Liu L, Gursoy ME, Yu L, Wei W (2019) Demystifying membership inference attacks in machine learning as a service.IEEE Transactions on Services Computing, pages 1-1.https://doi.org/10.1109/tsc.2019.2897554

  • Tschandl P, Rosendahl C, Kittler H (2018) The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions.Scientif Data 5(1):1-9

    文章 谷歌学者

  • Tseng Y-M, Chen F-G (2011) A free-rider aware reputation system for peer to peer file-sharing networks.Expert Syst Appl 38(3):2432-2440.doi.org/10.1016/j.e…

    文章来源:谷歌学者

  • Wang H (2019) 百度paddlepaddle发布21项新能力,加速行业级模型开发,网址:http://research.baidu.com/Blog/index-view?id=126

  • Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y (2020) Federated learning with matched averaging.arXivpreprintarXiv:2002.06440

  • Wang L, Xu S, Wang X, Zhu Q (2019) Eavesdrop the composition proportion of training labels in federated learning. arXiv preprintarXiv:1910.06044

  • Wei O, Zeng J, Guo Z, Yan W, Liu D, Fuentes S (2020) A homomorphic-encryption based vertical federated learning scheme for rick management.Comput Sci Inf Syst 17(3):819-834.doi.org/10.2298/csi…

    文章来源:谷歌学者

  • Wu D, Pan M, Xu Z, Zhang Y, Han Z (2020) Towards efficient secure aggregation for model update in federated learning.在GLOBECOM 2020 - 2020 IEEE全球通信会议上。IEEE,doi.org/10.1109/glo…

  • Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprintarXiv:1708.07747

  • Xie C, Huang K, Chen PY, Li B (2019) Dba:针对联合学习的分布式后门攻击。In International Conference on Learning Representations

  • Xu X, Lyu L (2020) Towards building a robust and fair federated learning system. arXiv preprintarXiv:2011.10464

  • Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H (2019) HybridAlpha.在第12届ACM人工智能与安全研讨会论文集--AISec'19。ACM出版社,doi.org/10.1145/333…

  • Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning.ACM Trans Intell Syst Technol 10(2):1-19。https://doi.org/10.1145/3298981

    文章来源:谷歌学者

  • Yang D, Zhang D, Chen L, Qu B (2015) NationTelescope:监测和可视化LBSNs中的大规模集体行为。J Netw Comput Appl 55:170-180.doi.org/10.1016/j.j…

    文章来源:谷歌学者

  • Yang Z, Zhang J, Chang EC (2019) Adversarial neural network inversion via auxiliary knowledge alignment. arXiv preprintarXiv:1902.08552

  • Yeh I-C, Lien C (2009) The comparisons of data mining techniques for the predictive accuracy of probability of credit card clients.Expert Syst Appl 36(2):2473-2480.doi.org/10.1016/j.e…

    文章 谷歌学者

  • Yelp.Yelp开放数据集,2020年。URL:www.yelp.com/dataset

  • Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y (2020) Batchcrypt:高效的同态加密,用于跨网络联合学习。In 2020 USENIX Annual Technical Conference (USENIXATC 20), pp 493-506

  • Zhang W, Tople S, Ohrimenko O (2020) Dataset-level attribute leakage in collaborative learning. arXiv preprintarXiv:2006.07267

  • Zhao Y, Chen J, Zhang J, Wu D, Teng J, Yu S (2020) PDGAN: A novel poisoning defense method in federated learning using generative adversarial network.在并行处理的算法和架构中,第595-609页。Springer国际出版公司,doi.org/10.1007/978…

  • Zhao B, Mopuri KR, Bilen H (2020) idlg:改进的梯度深度泄漏。arXiv预印本arXiv:2001.02610

  • Zheng Z, Zhou Y, Sun Y, Wang Z, Liu B, Li K (2021) Federated learning in smart cities:arXiv e-prints, pages arXiv-2102

  • Zhou X, Ming X, Yiming W, Zheng N (2021) Deep model poisoning attack on federated learning.未来互联网13(3):73.doi.org/10.3390/fi1…

    文章来源:谷歌学者

  • Zhu L, Han S (2020) Deep leakage from gradients.In Lecture Notes in Computer Science, pages 17-31.Springer国际出版公司,doi.org/10.1007/978…

  • Zong B, Song Q, Min MR, Cheng W, Lumezanu C, Cho D, Chen H (2018) Deep autoencoding gaussian mixture model for unsupervised anomaly detection.In International Conference on Learning Representations

下载参考文献

作者信息

所属机构

  1. 北京科技大学计算机与通信工程学院,北京,中国

    Attia Qammar & Huansheng Ning

  2. 瑞典Karlskrona,Blekinge技术学院计算机科学系

    丁建国

作者

  1. Attia Qammar

    查看作者出版物

    您还可以在PubMed Google Scholar中搜索该作者。

  2. 丁建国

    查看作者发表的文章

    您也可以在PubMed中搜索该作者 Google Scholar

  3. 宁环生

    查看作者发表的文章

    您也可以在Pub Med 谷歌学术中搜索该作者。

通讯作者

通讯作者:宁环生

其他信息

出版商说明

施普林格-自然公司对发表的地图和机构隶属关系中的管辖权要求保持中立。

权利和许可

重印和许可

关于这篇文章

引用这篇文章

Qammar, A., Ding, J. & Ning, H. Federated learning attack surface: taxonomy, cyber defences, challenges, and future directions.Artif Intell Rev 55, 3569-3606 (2022). doi.org/10.1007/s10…

下载引文

分享这篇文章

任何与你分享以下链接的人都可以阅读此内容。

获取可共享的链接

很抱歉,这篇文章目前没有可分享的链接。

复制到剪贴板

由Springer Nature SharedIt内容共享计划提供。

关键词

  • 联合学习
  • 安全性
  • 隐私
  • 攻击面
  • 网络防御