安装Anaconda
Anaconda安装脚本下载地址:www.continuum.io/downloads
执行 Anaconda2-x.x.x-Linux-x86_64.sh
安装的过程会把jupyter和其他一些常用工具也安装进去
安装成功后,启动Jupyter notebook,打开浏览器,进入notebook中的python环境
创建conda环境tensorflow
conda create -n tensorflow python=3.8
激活tensorflow环境
source activate tensorflow
安装tensorflow
pip install --ignore-installed tensorflow
安装tensorflow-gpu
装NVIDIA驱动
下载地址: www.nvidia.cn/Download/in…
安装CUDA和CuDNN
卸载原有的驱动
sudo apt-get --purge remove nvidia*
sudo apt autoremove
sudo apt-get --purge remove "*cublas*" "cuda*"
sudo apt-get --purge remove "*nvidia*"
系统cuda版本对照表:docs.nvidia.com/cuda/cuda-t…
python cuda 版本对照:tensorflow.google.cn/install
安装命令(参考Tensorflow官网)
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt-get update
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-11-0 \
libcudnn8=8.0.4.30-1+cuda11.0 \
libcudnn8-dev=8.0.4.30-1+cuda11.0
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install TensorRT. Requires that libcudnn8 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer7=7.1.3-1+cuda11.0 \
libnvinfer-dev=7.1.3-1+cuda11.0 \
libnvinfer-plugin7=7.1.3-1+cuda11.0
添加环境变量
PATH=/usr/local/cuda-11.0/bin:$PATH
LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH
创建conda环境tensorflow-gpu
conda create -n tensorflow-gpu python=3.8
激活tensorflow环境
source activate tensorflow-gpu
安装tensorflow-gpu
pip install tensorflow-gpu