Some Famouse Matrix

157 阅读1分钟

有名有姓的Matrix

Square Matrix

m = n 方形矩阵拥有对角线 diagonal

Upper Triangular Matrix

左下角为0

[235035003]\begin{bmatrix} 2&3&5\\0&3&5\\0&0&3 \end{bmatrix}

Lower Triangulare Matrix

右上角为0

[200130323]\begin{bmatrix} 2&0&0\\1&3&0\\3&2&3 \end{bmatrix}

Diagonal Matrix

All non-diagonal elements are "0"

[200030003]\begin{bmatrix} 2&0&0\\0&3&0\\0&0&3 \end{bmatrix}

Identity Matrix

Denoted by II(any size ), or InI_n ,很常用

I3=[100010001]I_3 = \begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}

Zero Matrix

Denoted by O (any size), or OmnO_m*n

O=[000000]O = \begin{bmatrix} 0&0&0\\0&0&0 \end{bmatrix}

Transpose

If AA is an mn matrix,ATA^T (transpose of AA) is an nm matrix whose (i,j)-entry is (j,i)-entry of ATA^T

Properties

  • AA and BB are m*n matrices,and s is scalar
  • (AT)T=A(A^T)^T = A
  • (sA)T=sAT(sA)^T = sA^T
  • (A+B)T=AT+BT(A+B)^T = A^T + B^T

Symmetric Matrix

AT=AA^T=A