Vector

152 阅读1分钟

Vectors

  • A vector v is a set of numbers
  • Components: the entries of a vector.
    • The i-th component of vector v refers to viv_i
    • v1=1,v2=2,v3=3v_1 = 1, v_2 = 2, v_3 = 3
  • If a vector only has less than for components, you can visualize it.

Vector Set

{[123],[456],[689],[902]}\begin{Bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 8 \\ 9 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \\ 2 \end{bmatrix} \end{Bmatrix}

  • A vector set can contain infinite elements L={[x1x2]:x1+x2=1}L = \begin{Bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1 + x_2 = 1 \end{Bmatrix}

[01],[10],[0.30.7],[0.70.3]\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0.3 \\ 0.7 \end{bmatrix}, \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix}

  • Rn R^n: We denote the set of all vectors with n entries by RnR^n

Scalar Multipication

v=[v1v2]v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}

cv=[cv1cv2]cv = \begin{bmatrix} cv_1 \\ cv_2 \end{bmatrix}

Vector Addition

(a1+b1,a2+b2)(a_1+b_1,a_2+b_2)

Properties of Vector

For any vectors uu,vv and ww in RnR^n, and any scalars a and b

  • u+v=v+uu + v = v + u
  • (u+v)+w=u+(v+w)(u+v)+w = u + (v+w)
  • There is an element 00 in RnR^n such that 0+u=u0 + u=u
  • There is an element uu' in RnR^n such that u+u=0u'+u=0
    • u=uu'= -u
    • 0=[0...0]0 = \begin{bmatrix} 0 \\ ... \\ 0 \end{bmatrix} zero vector
  • 1u=u1u = u
  • (ab)u=a(bu)(ab)u=a(bu)
  • a(u+v)=au+ava(u+v)=au+av
  • (a+b)u=au+bu(a+b)u=au+bu

PS: The objects have the following 8 properties ar "vectors"