复杂度分析-上
大O表示法
代码执行规律:所有代码的执行时间 T(n) 与每行代码的执行次数 n成正比
T(n) 表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n)来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
💡 当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。时间复杂度分析
1.只关注循环执行次数最多的代码
大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。
例子:
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。
2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
}
int sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
}
int sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + j
i * j;
}
}
return sum_1 + sum_2 + sum_3;
}
第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。
💡 即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。第二段代码和第三段代码的时间复杂度是 O(n) 和 O(n*2)
综合这三段代码的时间复杂度,取其中最大的量级。整段代码的时间复杂度就为O(n*2)。
将这个规律抽象成公式
3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
乘法法则看成是嵌套循环
int cal(int n) {
int ret = 0;
int i = 1;
for (; i < n; ++i) {
ret = ret + f(i);
}
}
int f(int n) {
int sum = 0;
int i = 1;
for (; i < n; ++i) {
sum = sum + i;
}
return sum;
}
单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(nn) = O(n2)。
几种常见时间复杂度实例分析
粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2*n) 和 O(n!)。
当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。
因此,主要来看几种常见的多项式时间复杂度。
1. O(1)
O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。
只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2.、
i=1;
while (i <= n){
i = i * 2;
}
💡 第三行代码是循环执行次数最多的。所以,我们只要能
计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2*x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。,所以,这段代码的时间复杂度就是
例:
=1;
while (i <= n){
i = i * 3;
}
💡 $O({\log}_{3}\left(n\right))$
我们可以把所有对数阶的时间复杂度都记为 。
对数之间是可以互相转换的, 就等于* ,所以 =,其中 C= 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以, 就等于 。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 。
:根据乘法法则如果一段代码的时间复杂度是,我们循环执行 n 遍,时间复杂度就是了。而且,也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 。
3.
这种复杂度由两个数据的规模来决定。
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}
💡 针对这种情况,原来的加法法则就不正确了,需要将加法规则改为:$T1(m) + T2(n) =O(f(m) + g(n))。$ 但是乘法法则继续有效:$T1(m)*T2(n) = O(f(m) * f(n))$。从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。
空间复杂度分析
💡 时间复杂度的全称是**渐进时间复杂度**,**表示算法的执行时间与数据规模之间的增长关系**。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),**表示算法的存储空间与数据规模之间的增长关系**。void print(int n) {
int i = 0;
int[] a = new int[n];
for (i; i <n; ++i) {
a[i] = i * i;
}
for (i = n-1; i >= 0; --i) {
print out a[i]
}
}
💡 常见的空间复杂度就是 O(1)、O(n)、O(n),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
内容小结
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:
O(1)、O(logn)、O(n)、O(nlogn)、O(n)。
思考
有人说,我们项目之前都会进行性能测试,再做代码的时间复杂度、空间复杂度分析,是不是多此一举呢?而且,每段代码都分析一下时间复杂度、空间复杂度,是不是很浪费时间呢?你怎么看待这个问题呢?
欢迎留言和我分享,我会第一时间给你反馈。