GO语言基础
切片
切片类似于c++中的vector,为可变长数组
// 声明一个切片,string类型,长度为3
// c++ :vector<string> s(3);
s := make([]string, 3)
// 随机访问
s[0] = "a"
s[1] = "b"
s[2] = "c"
// push_back
s = s.append(s, "d")
s = s.append(s, "e", "f")
fmt.Println(s)
作业
Guess Game
package main
import (
"bufio"
"fmt"
"math/rand"
"os"
"strconv"
"strings"
"time"
)
func main() {
maxNum := 100
rand.Seed(time.Now().UnixNano())
secretNumber := rand.Intn(maxNum)
// fmt.Println("The secret number is ", secretNumber)
fmt.Println("Please input your guess")
reader := bufio.NewReader(os.Stdin)
for {
input, err := reader.ReadString('\n')
if err != nil {
fmt.Println("An error occured while reading input. Please try again", err)
continue
}
input = strings.TrimSuffix(input, "\n")
guess, err := strconv.Atoi(input)
if err != nil {
fmt.Println("Invalid input. Please enter an integer value")
continue
}
fmt.Println("You guess is", guess)
if guess > secretNumber {
fmt.Println("Your guess is bigger than the secret number. Please try again")
} else if guess < secretNumber {
fmt.Println("Your guess is smaller than the secret number. Please try again")
} else {
fmt.Println("Correct, you Legend!")
break
}
}
}
translator
本模块使用了两个在线工具
curl转go
oktools json转go
新增搜索引擎
本文采用 DeepL在线翻译。使用浏览器的检查功能,找到传输数据的post包,使用curlconverter将其转换成go代码。
package main
import (
"fmt"
"io/ioutil"
"log"
"net/http"
"strings"
)
func main() {
client := &http.Client{}
var data = strings.NewReader(`{"jsonrpc":"2.0","method": "LMT_handle_jobs","params":{"jobs":[{"kind":"default","sentences":[{"text":"sl ee","id":0,"prefix":""}],"raw_en_context_before":[],"raw_en_context_after":[],"preferred_num_beams":4,"quality":"fast"}],"lang":{"preference":{"weight":{"DE":0.26466,"EN":0.4667,"ES":0.10235,"FR":0.16215,"IT":0.1255,"JA":0.04439,"NL":0.07424,"PL":0.02249,"PT":0.0194,"RU":0.01801,"ZH":0.3955,"BG":0.00198,"CS":0.01198,"DA":0.04979,"EL":0.0033,"ET":0.00666,"FI":0.00358,"HU":0.01643,"LT":0.00691,"LV":0.00418,"RO":0.00774,"SK":0.02502,"SL":0.00993,"SV":0.01514},"default":"default"},"source_lang_user_selected":"auto","target_lang":"ZH"},"priority":-1,"commonJobParams":{"browserType":1,"formality":null},"timestamp":1652061033338},"id":7740010}`)
req, err := http.NewRequest("POST", "https://www2.deepl.com/jsonrpc?method=LMT_handle_jobs", data)
if err != nil {
log.Fatal(err)
}
req.Header.Set("authority", "www2.deepl.com")
req.Header.Set("accept", "*/*")
req.Header.Set("accept-language", "zh,en-GB;q=0.9,en-US;q=0.8,en;q=0.7,zh-CN;q=0.6")
req.Header.Set("content-type", "application/json")
req.Header.Set("cookie", "__cf_bm=W.mnPqvfTWL1RPWOVQNTc7LR.IQl9rbzv3j8Tr7ZrIE-1652061004-0-Af18B65uLJhwtUi8YmUXxd4ZIkn1wITiUVwbWc2xquSmv7xTO8sQNQc84wn0sutQ1wk9lW+ktdIXBNrFumBDlwI=; dapUid=2a05c79c-9d58-4a01-9e40-e26e147da710; privacySettings=%7B%22v%22%3A%221%22%2C%22t%22%3A1652054400%2C%22m%22%3A%22LAX_AUTO%22%2C%22consent%22%3A%5B%22NECESSARY%22%2C%22PERFORMANCE%22%2C%22COMFORT%22%5D%7D; dapVn=1; LMTBID=v2|0753858d-df93-43df-a35f-f917b7fef2ef|7c3b2fe1bdf48854c351131dd7513ae0; dapSid=%7B%22sid%22%3A%22417691a7-03df-48db-8660-8783fd32b856%22%2C%22lastUpdate%22%3A1652061033%7D")
req.Header.Set("origin", "https://www.deepl.com")
req.Header.Set("referer", "https://www.deepl.com/")
req.Header.Set("sec-ch-ua", `" Not A;Brand";v="99", "Chromium";v="101", "Google Chrome";v="101"`)
req.Header.Set("sec-ch-ua-mobile", "?0")
req.Header.Set("sec-ch-ua-platform", `"macOS"`)
req.Header.Set("sec-fetch-dest", "empty")
req.Header.Set("sec-fetch-mode", "cors")
req.Header.Set("sec-fetch-site", "same-site")
req.Header.Set("user-agent", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36")
resp, err := client.Do(req)
if err != nil {
log.Fatal(err)
}
defer resp.Body.Close()
bodyText, err := ioutil.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)
}
fmt.Printf("%s\n", bodyText)
}
可以发现,查询的文本被包装在text字段,将这里修改为变量
func getHeader(word string) string {
// 将text修改为%s用于组装变量
var rawheader = `{"jsonrpc":"2.0","method": "LMT_handle_jobs","params":{"jobs":[{"kind":"default","sentences":[{"text":"%s","id":0,"prefix":""}],"raw_en_context_before":[],"raw_en_context_after":[],"preferred_num_beams":4,"quality":"fast"}],"lang":{"preference":{"weight":{"DE":0.26466,"EN":0.4667,"ES":0.10235,"FR":0.16215,"IT":0.1255,"JA":0.04439,"NL":0.07424,"PL":0.02249,"PT":0.0194,"RU":0.01801,"ZH":0.3955,"BG":0.00198,"CS":0.01198,"DA":0.04979,"EL":0.0033,"ET":0.00666,"FI":0.00358,"HU":0.01643,"LT":0.00691,"LV":0.00418,"RO":0.00774,"SK":0.02502,"SL":0.00993,"SV":0.01514},"default":"default"},"source_lang_user_selected":"auto","target_lang":"ZH"},"priority":-1,"commonJobParams":{"browserType":1,"formality":null},"timestamp":1652061033338},"id":7740010}`
var header = fmt.Sprintf(rawheader, word)
return header
}
接下来解析返回的json,这里使用了oktools. 可以发现翻译的结果在Result->Translations->Beams->Sentences->Text下,设置相应的输出结构
Result struct {
Translations []struct {
Beams []struct {
Sentences []struct {
Text
...
// 输出
// fmt.Printf("%#v\n", dictResponse)
for _, translation := range dictResponse.Result.Translations {
for _, beam := range translation.Beams {
for _, sentences := range beam.Sentences {
fmt.Println(sentences.Text)
}
}
}
并行请求两个翻译引擎来提高响应速度
目前只有一个简单粗暴的想法,使用一个waitGroup,计数为1,那么先结束的协程将计数减1,自然就输出了较快的答案。但是不知道主线程在协程前结束是否会产生问题,go有孤儿协程的机制吗?
package main
import (
"bytes"
"encoding/json"
"fmt"
"io/ioutil"
"log"
"net/http"
"os"
"strings"
"sync"
)
type DictRequest struct {
TransType string `json:"trans_type"`
Source string `json:"source"`
UserID string `json:"user_id"`
}
type DictResponse struct {
Rc int `json:"rc"`
Wiki struct {
KnownInLaguages int `json:"known_in_laguages"`
Description struct {
Source string `json:"source"`
Target interface{} `json:"target"`
} `json:"description"`
ID string `json:"id"`
Item struct {
Source string `json:"source"`
Target string `json:"target"`
} `json:"item"`
ImageURL string `json:"image_url"`
IsSubject string `json:"is_subject"`
Sitelink string `json:"sitelink"`
} `json:"wiki"`
Dictionary struct {
Prons struct {
EnUs string `json:"en-us"`
En string `json:"en"`
} `json:"prons"`
Explanations []string `json:"explanations"`
Synonym []string `json:"synonym"`
Antonym []string `json:"antonym"`
WqxExample [][]string `json:"wqx_example"`
Entry string `json:"entry"`
Type string `json:"type"`
Related []interface{} `json:"related"`
Source string `json:"source"`
} `json:"dictionary"`
}
type DeeplDictResponse struct {
Jsonrpc string `json:"jsonrpc"`
ID int `json:"id"`
Result struct {
Translations []struct {
Beams []struct {
Sentences []struct {
Text string `json:"text"`
Ids []int `json:"ids"`
} `json:"sentences"`
NumSymbols int `json:"num_symbols"`
} `json:"beams"`
Quality string `json:"quality"`
} `json:"translations"`
TargetLang string `json:"target_lang"`
SourceLang string `json:"source_lang"`
SourceLangIsConfident bool `json:"source_lang_is_confident"`
DetectedLanguages struct {
EN float64 `json:"EN"`
DE float64 `json:"DE"`
FR float64 `json:"FR"`
ES float64 `json:"ES"`
PT float64 `json:"PT"`
IT float64 `json:"IT"`
NL float64 `json:"NL"`
PL float64 `json:"PL"`
RU float64 `json:"RU"`
ZH float64 `json:"ZH"`
JA float64 `json:"JA"`
BG float64 `json:"BG"`
CS float64 `json:"CS"`
DA float64 `json:"DA"`
EL float64 `json:"EL"`
ET float64 `json:"ET"`
FI float64 `json:"FI"`
HU float64 `json:"HU"`
LT float64 `json:"LT"`
LV float64 `json:"LV"`
RO float64 `json:"RO"`
SK float64 `json:"SK"`
SL float64 `json:"SL"`
SV float64 `json:"SV"`
Unsupported float64 `json:"unsupported"`
} `json:"detectedLanguages"`
} `json:"result"`
}
func getHeader(word string) string {
// 将text修改为%s用于组装变量
var rawheader = `{"jsonrpc":"2.0","method": "LMT_handle_jobs","params":{"jobs":[{"kind":"default","sentences":[{"text":"%s","id":0,"prefix":""}],"raw_en_context_before":[],"raw_en_context_after":[],"preferred_num_beams":4,"quality":"fast"}],"lang":{"preference":{"weight":{"DE":0.26466,"EN":0.4667,"ES":0.10235,"FR":0.16215,"IT":0.1255,"JA":0.04439,"NL":0.07424,"PL":0.02249,"PT":0.0194,"RU":0.01801,"ZH":0.3955,"BG":0.00198,"CS":0.01198,"DA":0.04979,"EL":0.0033,"ET":0.00666,"FI":0.00358,"HU":0.01643,"LT":0.00691,"LV":0.00418,"RO":0.00774,"SK":0.02502,"SL":0.00993,"SV":0.01514},"default":"default"},"source_lang_user_selected":"auto","target_lang":"ZH"},"priority":-1,"commonJobParams":{"browserType":1,"formality":null},"timestamp":1652061033338},"id":7740010}`
var header = fmt.Sprintf(rawheader, word)
return header
}
func queryDeeplTranslate(text string) {
client := &http.Client{}
var data = strings.NewReader(getHeader(text))
req, err := http.NewRequest("POST", "https://www2.deepl.com/jsonrpc?method=LMT_handle_jobs", data)
if err != nil {
log.Fatal(err)
}
req.Header.Set("authority", "www2.deepl.com")
req.Header.Set("accept", "*/*")
req.Header.Set("accept-language", "zh,en-GB;q=0.9,en-US;q=0.8,en;q=0.7,zh-CN;q=0.6")
req.Header.Set("content-type", "application/json")
req.Header.Set("cookie", "__cf_bm=W.mnPqvfTWL1RPWOVQNTc7LR.IQl9rbzv3j8Tr7ZrIE-1652061004-0-Af18B65uLJhwtUi8YmUXxd4ZIkn1wITiUVwbWc2xquSmv7xTO8sQNQc84wn0sutQ1wk9lW+ktdIXBNrFumBDlwI=; dapUid=2a05c79c-9d58-4a01-9e40-e26e147da710; privacySettings=%7B%22v%22%3A%221%22%2C%22t%22%3A1652054400%2C%22m%22%3A%22LAX_AUTO%22%2C%22consent%22%3A%5B%22NECESSARY%22%2C%22PERFORMANCE%22%2C%22COMFORT%22%5D%7D; dapVn=1; LMTBID=v2|0753858d-df93-43df-a35f-f917b7fef2ef|7c3b2fe1bdf48854c351131dd7513ae0; dapSid=%7B%22sid%22%3A%22417691a7-03df-48db-8660-8783fd32b856%22%2C%22lastUpdate%22%3A1652061033%7D")
req.Header.Set("origin", "https://www.deepl.com")
req.Header.Set("referer", "https://www.deepl.com/")
req.Header.Set("sec-ch-ua", `" Not A;Brand";v="99", "Chromium";v="101", "Google Chrome";v="101"`)
req.Header.Set("sec-ch-ua-mobile", "?0")
req.Header.Set("sec-ch-ua-platform", `"macOS"`)
req.Header.Set("sec-fetch-dest", "empty")
req.Header.Set("sec-fetch-mode", "cors")
req.Header.Set("sec-fetch-site", "same-site")
req.Header.Set("user-agent", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36")
resp, err := client.Do(req)
if err != nil {
log.Fatal(err)
}
defer resp.Body.Close()
bodyText, err := ioutil.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)
}
if resp.StatusCode != 200 {
log.Fatal("bad StatusCode:", resp.StatusCode, "body", string(bodyText))
}
var dictResponse DeeplDictResponse
err = json.Unmarshal(bodyText, &dictResponse)
if err != nil {
log.Fatal(err)
}
// fmt.Printf("%#v\n", dictResponse)
for _, translation := range dictResponse.Result.Translations {
for _, beam := range translation.Beams {
for _, sentences := range beam.Sentences {
fmt.Println(sentences.Text)
}
}
}
}
func queryColorTranslate(word string) {
client := &http.Client{}
request := DictRequest{TransType: "en2zh", Source: word}
buf, err := json.Marshal(request)
if err != nil {
log.Fatal(err)
}
var data = bytes.NewReader(buf)
req, err := http.NewRequest("POST", "https://api.interpreter.caiyunai.com/v1/dict", data)
if err != nil {
log.Fatal(err)
}
req.Header.Set("Connection", "keep-alive")
req.Header.Set("DNT", "1")
req.Header.Set("os-version", "")
req.Header.Set("sec-ch-ua-mobile", "?0")
req.Header.Set("User-Agent", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36")
req.Header.Set("app-name", "xy")
req.Header.Set("Content-Type", "application/json;charset=UTF-8")
req.Header.Set("Accept", "application/json, text/plain, */*")
req.Header.Set("device-id", "")
req.Header.Set("os-type", "web")
req.Header.Set("X-Authorization", "token:qgemv4jr1y38jyq6vhvi")
req.Header.Set("Origin", "https://fanyi.caiyunapp.com")
req.Header.Set("Sec-Fetch-Site", "cross-site")
req.Header.Set("Sec-Fetch-Mode", "cors")
req.Header.Set("Sec-Fetch-Dest", "empty")
req.Header.Set("Referer", "https://fanyi.caiyunapp.com/")
req.Header.Set("Accept-Language", "zh-CN,zh;q=0.9")
req.Header.Set("Cookie", "_ym_uid=16456948721020430059; _ym_d=1645694872")
resp, err := client.Do(req)
if err != nil {
log.Fatal(err)
}
defer resp.Body.Close()
bodyText, err := ioutil.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)
}
if resp.StatusCode != 200 {
log.Fatal("bad StatusCode:", resp.StatusCode, "body", string(bodyText))
}
var dictResponse DictResponse
err = json.Unmarshal(bodyText, &dictResponse)
if err != nil {
log.Fatal(err)
}
fmt.Println(word, "UK:", dictResponse.Dictionary.Prons.En, "US:", dictResponse.Dictionary.Prons.EnUs)
for _, item := range dictResponse.Dictionary.Explanations {
fmt.Println(item)
}
}
var wg sync.WaitGroup
func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, `usage: simpleDict WORD
example: simpleDict hello
`)
os.Exit(1)
}
word := os.Args[1]
wg.Add(1)
go func() {
defer wg.Done()
queryColorTranslate(word)
}()
go func() {
defer wg.Done()
queryDeeplTranslate(word)
}()
wg.Wait()
}