锁的性能
Synchronized原理分析
int main(int argc, char * argv[]) {
NSString * appDelegateClassName;
@autoreleasepool {
// Setup code that might create autoreleased objects goes here.
appDelegateClassName = NSStringFromClass([AppDelegate class]);
@synchronized (appDelegateClassName) {
}
}
return UIApplicationMain(argc, argv, nil, appDelegateClassName);
}
通过xcrun获得上面代码的cpp形式:
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m -o main.cpp
struct AppDelegate_IMPL {
struct UIResponder_IMPL UIResponder_IVARS;
};
/* @end */
int main(int argc, char * argv[]) {
NSString * appDelegateClassName;
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
appDelegateClassName = NSStringFromClass(((Class (*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("AppDelegate"), sel_registerName("class")));
{ id _rethrow = 0; id _sync_obj = (id)appDelegateClassName; objc_sync_enter(_sync_obj);
try {
struct _SYNC_EXIT { _SYNC_EXIT(id arg) : sync_exit(arg) {}
~_SYNC_EXIT() {objc_sync_exit(sync_exit);}
id sync_exit;
} _sync_exit(_sync_obj);
} catch (id e) {_rethrow = e;}
{ struct _FIN { _FIN(id reth) : rethrow(reth) {}
~_FIN() { if (rethrow) objc_exception_throw(rethrow); }
id rethrow;
} _fin_force_rethow(_rethrow);}
}
}
return UIApplicationMain(argc, argv, __null, appDelegateClassName);
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };
上述代码精简一下得到下面的核心代码:
id _rethrow = 0;
id _sync_obj = (id)appDelegateClassName;
objc_sync_enter(_sync_obj);
objc_sync_exit(_sync_obj);
通过添加符号断点调试如下:
可以看到libobjc.A.dylib objc_sync_enter:
,接下来去找libobjc
的源码:
objc_sync_enter
// Begin synchronizing on 'obj'.
// Allocates recursive mutex associated with 'obj' if needed.
// Returns OBJC_SYNC_SUCCESS once lock is acquired.
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, ACQUIRE);
ASSERT(data);
data->mutex.lock();
} else {
// @synchronized(nil) does nothing
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();
}
return result;
}
objc_sync_exit
// End synchronizing on 'obj'.
// Returns OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
int objc_sync_exit(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, RELEASE);
if (!data) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
} else {
bool okay = data->mutex.tryUnlock();
if (!okay) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
}
}
} else {
// @synchronized(nil) does nothing
}
return result;
}
SyncData结构
typedef struct alignas(CacheLineSize) SyncData {
struct SyncData* nextData;//链表
DisguisedPtr<objc_object> object;
int32_t threadCount; // number of THREADS using this block
recursive_mutex_t mutex;
} SyncData;
id2data
static SyncData* id2data(id object, enum usage why)
{
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
SyncData **listp = &LIST_FOR_OBJ(object);
SyncData* result = NULL;
#if SUPPORT_DIRECT_THREAD_KEYS
// Check per-thread single-entry fast cache for matching object
bool fastCacheOccupied = NO;
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
if (data) {
fastCacheOccupied = YES;
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
if (result->threadCount <= 0 || lockCount <= 0) {
_objc_fatal("id2data fastcache is buggy");
}
switch(why) {
case ACQUIRE: {
lockCount++;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
break;
}
case RELEASE:
lockCount--;//说明在一个线程里面的加锁次数
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
//说明可以支持多线程
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
#endif
// Check per-thread cache of already-owned locks for matching object
SyncCache *cache = fetch_cache(NO);
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
result = item->data;
if (result->threadCount <= 0 || item->lockCount <= 0) {
_objc_fatal("id2data cache is buggy");
}
switch(why) {
case ACQUIRE:
item->lockCount++;
break;
case RELEASE:
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
lockp->lock();
{
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
result = p;
// atomic because may collide with concurrent RELEASE
//说明可以支持多线程
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
}
// Allocate a new SyncData and add to list.
// XXX allocating memory with a global lock held is bad practice,
// might be worth releasing the lock, allocating, and searching again.
// But since we never free these guys we won't be stuck in allocation very often.
posix_memalign((void **)&result, alignof(SyncData), sizeof(SyncData));
result->object = (objc_object *)object;
result->threadCount = 1;
new (&result->mutex) recursive_mutex_t(fork_unsafe_lock);
result->nextData = *listp;
*listp = result;
done:
lockp->unlock();
if (result) {
// Only new ACQUIRE should get here.
// All RELEASE and CHECK and recursive ACQUIRE are
// handled by the per-thread caches above.
if (why == RELEASE) {
// Probably some thread is incorrectly exiting
// while the object is held by another thread.
return nil;
}
if (why != ACQUIRE) _objc_fatal("id2data is buggy");
if (result->object != object) _objc_fatal("id2data is buggy");
#if SUPPORT_DIRECT_THREAD_KEYS
if (!fastCacheOccupied) {
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);
} else
#endif
{
// Save in thread cache
if (!cache) cache = fetch_cache(YES);
cache->list[cache->used].data = result;
cache->list[cache->used].lockCount = 1;
cache->used++;
}
}
return result;
}
重点
threadCount 说明有多个线程;
lockcount 说明在一个线程中可以加锁的次数;
SyncList数据结构
根据上面的代码可以知道,syncData通过object获取,当lock的时候添加一个syncData,unlock的时候删除一个syncData.
这个数据结构,也说明了可对一个对象重复加锁的原理。
小结
1、 synchronized 是一个全局哈希表,采用的是拉链法,拉链的是syncData
2、sDataList array 存储的是 syncList,syncList绑定的是objc
3、objec_sync_enter 、objec_sync_exit 对称,封装底层的递归锁
4、支持两种存储: tls 和 cache
5、当第一次加锁的时候,会对syncData采用头插法链表结构,标记 threadCount = 1
6、再次加锁的时候,要判断是否是同一个object
7、tls -> lockcount ++
8、tls找不到的时候, sync threadCount ++
9、解锁时, lock -- ,threadCount --
Synchronized: 可重入、递归、多线程
1、TLS保障 threadCount 多少条线程对这个锁对象加锁
2、 lockcount++ 表示一个线程内object被加锁多少次