Redis底层数据结构之SDS

122 阅读12分钟

Redis我们最常用的是字符串,既然字符串的使用如此广泛和关键,就使得我们在实现字符串时,需要尽量满足以下三个要求:

  • 能支持丰富且高效的字符串操作,比如字符串追加、拷贝、比较、获取长度等;
  • 能保存任意的二进制数据,比如图片等;
  • 能尽可能地节省内存开销。

其实,如果你开发过 C 语言程序,你应该就知道,在 C 语言中可以使用 char* 字符数组来 实现字符串。同时,C 语言标准库 string.h 中也定义了多种字符串的操作函数,比如字符 串比较函数 strcmp、字符串长度计算函数 strlen、字符串追加函数 strcat 等,这样就便于 开发者直接调用这些函数来完成字符串操作。

所以这样看起来,Redis 好像完全可以复用 C 语言中对字符串的实现呀? 但实际上,我们在使用 C 语言字符串时,经常需要手动检查和分配字符串空间,而这就会 增加代码开发的工作量。而且,图片等数据还无法用字符串保存,也就限制了应用范围。

其实,Redis 设计了简单动态字符串(Simple Dynamic String,SDS)的结构,用来表示 字符串。相比于 C 语言中的字符串实现,SDS 这种字符串的实现方式,会提升字符串的操 作效率,并且可以用来保存二进制数据。

所以今天这节课介绍下 SDS 结构的设计思想和实现技巧,这样你就既可以掌握 char* 实现方法的不足和 SDS 的优势,还能学习到紧凑型内存结构的实现技巧。如果你要在自己的系统软件中实现字符串类型,就可以参考 Redis 的设计思想,来更好地提升操作效率,节省内存开销。

为什么 Redis 不用 char*?

char* 的结构设计

首先,我们来看看 char* 字符数组的结构。 char* 字符数组的结构很简单,就是一块连续的内存空间,依次存放了字符串中的每一个 字符。比如,下图显示的就是字符串“redis”的char* 数组结构。

image.png

从图中可以看到,字符数组的最后一个字符是“\0”,这个字符的作用是什么呢?其实,C 语言在对字符串进行操作时,char* 指针只是指向字符数组的起始位置,而字符数组的结尾 位置就用“\0”表示,意思是指字符串的结束。

这样一来,C 语言标准库中字符串的操作函数,就会通过检查字符数组中是否有“\0”, 来判断字符串是否结束。比如,strlen 函数就是一种字符串操作函数,它可以返回一个字 符串的长度。这个函数会遍历字符数组中的每一个字符,并进行计数,直到检查的字符为 “\0”。此时,strlen 函数会停止计数,返回已经统计到的字符个数。

来看下“\0”结束字符对字符串长度的影响。这里我创建了两个字 符串变量 a 和 b,分别给它们赋值为“red\0is”和“redis\0”。然后,我用 strlen 函数 计算这两个字符串长度。变量a计算出是3,变量b计算出来是5

也就是说,char* 字符串以“\0”表示字符串的结束,其实会给我们保存数据带来一定的负 面影响。如果我们要保存的数据中,本身就有“\0”,那么数据在“\0”处就会被截断, 而这就不符合 Redis 希望能保存任意二进制数据的需求了。

而除了 char* 字符数组结构的设计问题以外,使用“\0”作为字符串的结束字符,虽然可以让字符串操作函数判断字符串的结束位置,但它也会带来另一方面的负面影响,也就是会导致操作函数的复杂度增加。

我还是以 strlen 函数为例,该函数需要遍历字符数组中的每一个字符,才能得到字符串长 度,所以这个操作函数的复杂度是 O(N)。

我们再来看另一个常用的操作函数:字符串追加函数 strcat。strcat 函数是将一个源字符串 src 追加到一个目标字符串的末尾。

我们再来看另一个常用的操作函数:字符串追加函数 strcat。strcat 函数是将一个源字符 串 src 追加到一个目标字符串的末尾。strcat 函数和 strlen 函数类似,复杂度都很高,也都需要先通过遍历 字符串才能得到目标字符串的末尾。然后对于 strcat 函数来说,还要再遍历源字符串才能 完成追加。另外,它在把源字符串追加到目标字符串末尾时,还需要确认目标字符串具有 足够的可用空间,否则就无法追加。

所以,这就要求开发人员在调用 strcat 时,要保证目标字符串有足够的空间,不然就需要开发人员动态分配空间,从而增加了编程的复杂度。而操作函数的复杂度一旦增加,就会影响字符串的操作效率,这就不符合 Redis 对字符串高效操作的需求了。

综合以上在 C 语言中使用 char* 实现字符串的两大不足之处以后,我们现在就需要 找到新的实现字符串的方式了。所以接下来,我们就来学习下,Redis 是如何对字符串的 实现进行设计考虑的。

SDS结构设计

因为 Redis 是使用 C 语言开发的,所以为了保证能尽量复用 C 标准库中的字符串操作函数,Redis 保留了使用字符数组来保存实际的数据。但是,和 C 语言仅用字符数组不同,Redis 还专门设计了 SDS(即简单动态字符串)的数据结构。下面我们一起来看看。

首先,SDS 结构里包含了一个字符数组 buf[],用来保存实际数据。同时,SDS 结构里还 包含了三个元数据,分别是字符数组现有长度 len、分配给字符数组的空间长度 alloc,以 及 SDS 类型 flags。其中,Redis 给 len 和 alloc 这两个元数据定义了多种数据类型,进 而可以用来表示不同类型的 SDS,稍后我会给你具体介绍。下图显示了 SDS 的结构,你可 以先看下。

image.png

另外,如果你在 Redis 源码中查找过 SDS 的定义,那你可能会看到,Redis 使用 typedef 给 char* 类型定义了一个别名,这个别名就是 sds,如:typedef char *sds

其实,这是因为 SDS 本质还是字符数组,只是在字符数组基础上增加了额外的元数据。在 Redis 中需要用到字符数组时,就直接使用 sds 这个别名。

同时,在创建新的字符串时,Redis 会调用 SDS 创建函数 sdsnewlen。sdsnewlen 函数会新建 sds 类型变量(也就是 char* 类型变量),并新建 SDS 结构体,把 SDS 结构体中的数组 buf[] 赋给 sds 类型变量。最后,sdsnewlen 函数会把要创建的字符串拷贝给 sds 变量。

了解了 SDS 结构的定义后,我们再来看看,相比传统 C 语言字符串,SDS 操作效率的改进之处。

SDS操作

因为 SDS 结构中记录了字符数组已占用的空间和被分配的空间,这就比传统 C 语言实现的 字符串能带来更高的操作效率。 我还是以字符串追加操作为例。Redis 中实现字符串追加的函数是 sds.c 文件中的 sdscatlen 函数。这个函数的参数一共有三个,分别是目标字符串 s、源字符串 t 和要追加 的长度 len,源码如下所示:

sds sdscatlen(sds s, const void *t, size_t len) {
//获取目标字符串s的当前长度
size_t curlen = sdslen(s);
//根据要追加的长度len和目标字符串s的现有长度,判断是否要增加新的空间
s = sdsMakeRoomFor(s,len);
if (s == NULL) return NULL;
//将源字符串t中len长度的数据拷贝到目标字符串结尾
memcpy(s+curlen, t, len);
//设置目标字符串的最新长度:拷贝前长度curlen加上拷贝长度
sdssetlen(s, curlen+len);
//拷贝后,在目标字符串结尾加上\0
s[curlen+len] = '\0'
return s
}

通过分析这个函数的源码,我们可以看到 sdscatlen 的实现较为简单,其执行过程分为三 步:

  • 首先,获取目标字符串的当前长度,并调用 sdsMakeRoomFor 函数,根据当前长度和 要追加的长度,判断是否要给目标字符串新增空间。这一步主要是保证,目标字符串有 足够的空间接收追加的字符串。
  • 其次,在保证了目标字符串的空间足够后,将源字符串中指定长度 len 的数据追加到目 标字符串。
  • 最后,设置目标字符串的最新长度。

所以,到这里你就能发现,和 C 语言中的字符串操作相比,SDS 通过记录字符数组的使用 长度和分配空间大小,避免了对字符串的遍历操作,降低了操作开销,进一步就可以帮助 诸多字符串操作更加高效地完成,比如创建、追加、复制、比较等,这一设计思想非常值 得我们学习。

这一设计实现,就避免了开发人员因忘记给目标字符串扩容,而导致操作失败的情况。比 如,我们使用函数 strcpy (char * dest, const char * src) 时,如果 src 的长度大于 dest 的 长度,代码中我们也没有做检查的话,就会造成内存溢出。所以这种封装操作的设计思 想,同样值得我们学习。

那么,除了使用元数据记录字符串数组长度和封装操作的设计思想,SDS 还有什么优秀的 设计与实现值得我们学习呢?这就和我刚才给你介绍的 Redis 对内存节省的需求相关了。

所以接下来,我们就来看看 SDS 在编程技巧上是如何实现节省内存的。

紧凑型字符串结构

前面我提到,SDS 结构中有一个元数据 flags,表示的是 SDS 类型。事实上,SDS 一共设 计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64。这 5 种类型的主要区别就在于,它们数据结构中的字符数组现有长度 len 和分配空间长度 alloc,这两个元数据的数据类型不同。

因为 sdshdr5 这一类型 Redis 已经不再使用了,所以我们这里主要来了解下剩余的 4 种类 型。以 sdshdr8 为例,它的定义如下所示:

struct __attribute__ ((__packed__)) sdshdr8 {
uint8_t len; /* 字符数组现有长度*/
uint8_t alloc; /* 字符数组的已分配空间,不包括结构体和\0结束字符*/
unsigned char flags; /* SDS类型*/
char buf[]; /*字符数组*/
};

我们可以看到,现有长度 len 和已分配空间 alloc 的数据类型都是 uint8_t。uint8_t 是 8 位无符号整型,会占用 1 字节的内存空间。当字符串类型是 sdshdr8 时,它能表示的字符 数组长度(包括数组最后一位\0)不会超过 256 字节(2 的 8 次方等于 256)。

而对于 sdshdr16、sdshdr32、sdshdr64 三种类型来说,它们的 len 和 alloc 数据类型分别是 uint16_t、uint32_t、uint64_t,即它们能表示的字符数组长度,分别不超过 2 的 16 次方、32 次方和 64 次方。这两个元数据占用的内存空间在 sdshdr16、sdshdr32、sdshdr64 类型中,则分别是 2 字节、4 字节和 8 字节。

实际上,SDS 之所以设计不同的结构头(即不同类型),是为了能灵活保存不同大小的字 符串,从而有效节省内存空间。因为在保存不同大小的字符串时,结构头占用的内存空间 也不一样,这样一来,在保存小字符串时,结构头占用空间也比较少。

否则,假设 SDS 都设计一样大小的结构头,比如都使用 uint64_t 类型表示 len 和 alloc, 那么假设要保存的字符串是 10 个字节,而此时结构头中 len 和 alloc 本身就占用了 16 个 字节了,比保存的数据都多了。所以这样的设计对内存并不友好,也不满足 Redis 节省内存的需求。

好了,除了设计不同类型的结构头,Redis 在编程上还使用了专门的编译优化来节省内存 空间。在刚才介绍的 sdshdr8 结构定义中,我们可以看到,在 struct 和 sdshdr8 之间使 用了__attribute__ ((__packed__)),如下所示:struct __attribute__ ((__packed__)) sdshdr8

其实这里,__attribute__ ((__packed__))的作用就是告诉编译器,在编译 sdshdr8 结构时,不要使用字节对齐的方式,而是采用紧凑的方式分配内存。这是因为在 默认情况下,编译器会按照 8 字节对齐的方式,给变量分配内存。也就是说,即使一个变 量的大小不到 8 个字节,编译器也会给它分配 8 个字节。

为了方便你理解,我给你举个例子。假设我定义了一个结构体 s1,它有两个成员变量,类 型分别是 char 和 int。虽然 char 类型占用 1 个字节,int 类型占用 4 个字节,但是如果你运行这段代码,就会发 现打印出来的结果是 8。这就是因为在默认情况下,编译器会给 s1 结构体分配 8 个字节的 空间,而这样其中就有 3 个字节被浪费掉了。

为了节省内存,Redis 在这方面的设计上可以说是精打细算的。所以,Redis 采用了__attribute__ ((__packed__))属性定义结构体,这样一来,结构体实际占用多少内 存空间,编译器就分配多少空间。

总而言之,如果你在开发程序时,希望能节省数据结构的内存开销,就可以把 __attribute__ ((__packed__))这个编程方法用起来。