华里士公式及例题

688 阅读1分钟
1. 基本公式

0π2(sinx)ndx=0π2(cosx)ndx={n1nn3n2...23n为正奇数n1nn3n2...12n为正偶数 \int_0^\frac{π}{2} (sinx)^n\, dx = \int_0^\frac{π}{2} (cosx)^n\, dx = \begin{cases} \dfrac{n-1}{n} \dfrac{n-3}{n-2} ...\dfrac{2}{3}, n 为正奇数 \\ \\ \dfrac{n-1}{n} \dfrac{n-3}{n-2} ...\dfrac{1}{2},n 为正偶数 \end{cases}

2.推导结论

0π(sinx)ndx=20π2(sinx)ndxn为正整数\int_0^π (sinx)^n\, dx = 2 \int_0^\frac{π}{2} (sinx)^n\, dx, n 为正整数

0π(cosx)ndx={0n为正奇数20π2(cosx)ndxn为正偶数\int_0^π (cosx)^n\, dx = \begin{cases} 0,n 为正奇数 \\ 2 \int_0^\frac{π}{2} (cosx)^n\, dx,n 为正偶数 \end{cases}

02π(sinx)ndx=02π(cosx)ndx={0n为正奇数40π2(sinx)ndxn为正偶数\int_0^{2π} (sinx)^n\, dx = \int_0^{2π} (cosx)^n\, dx = \begin{cases} 0,n 为正奇数 \\ 4 \int_0^\frac{π}{2} (sinx)^n\, dx,n 为正偶数 \end{cases}

3.例题

计算积分 06x26xx2dx=06x29(x3)2dx  x3=3sintx=3sint+3dx=3cost  dt=π2π29[(sint)2+2sint+1]9(cost)2dt=81[π2π2(sint)2(cost)2dt+2π2π2sint(cost)2dt+π2π2(cost)2dt]=81[π2π2(sint)2(cost)2dt+0(奇函数)+π2π2(cost)2dt]=81[20π2[1(cost)2](cost)2dt+20π2(cost)2dt]=81[2[0π2(cost)2dt0π2(cost)4dt]+20π2(cost)2dt]=81[2[12.π234.12.π2]+2.12.π2]=81.5π8=405π8 \int_0^6 x^2\sqrt{6x-x^2}\, dx \\ =\int_0^6 x^2\sqrt{9-(x-3)^2}\, dx \\ 令 \; x - 3=3sint \quad x=3sint + 3 \quad dx=3cost\;dt \\ =\int_\frac{-π}{2}^\frac{π}{2}9[(sint)^2 + 2sint+ 1]9(cost)^2\,dt \\ =81[\int_\frac{-π}{2}^\frac{π}{2}(sint)^2(cost)^2\,dt + 2\int_\frac{-π}{2}^\frac{π}{2}sint(cost)^2\,dt + \int_\frac{-π}{2}^\frac{π}{2}(cost)^2\,dt] \\ =81[\int_\frac{-π}{2}^\frac{π}{2}(sint)^2(cost)^2\,dt + 0(奇函数) + \int_\frac{-π}{2}^\frac{π}{2}(cost)^2\,dt] \\ =81[2\int_0^\frac{π}{2}[1-(cost)^2](cost)^2\,dt + 2\int_0^\frac{π}{2}(cost)^2\,dt] \\ =81[2[\int_0^\frac{π}{2}(cost)^2\,dt-\int_0^\frac{π}{2}(cost)^4\,dt] + 2\int_0^\frac{π}{2}(cost)^2\,dt] \\ =81[2[\dfrac{1}{2}.\dfrac{π}{2}-\dfrac{3}{4}.\dfrac{1}{2}.\dfrac{π}{2}] + 2.\dfrac{1}{2}.\dfrac{π}{2}]\\ =81.\dfrac{5π}{8} \\ =\dfrac{405π}{8}