1. 基本公式
∫02π(sinx)ndx=∫02π(cosx)ndx=⎩⎨⎧nn−1n−2n−3...32,n为正奇数nn−1n−2n−3...21,n为正偶数
2.推导结论
∫0π(sinx)ndx=2∫02π(sinx)ndx,n为正整数
∫0π(cosx)ndx={0,n为正奇数2∫02π(cosx)ndx,n为正偶数
∫02π(sinx)ndx=∫02π(cosx)ndx={0,n为正奇数4∫02π(sinx)ndx,n为正偶数
3.例题
计算积分
∫06x26x−x2dx=∫06x29−(x−3)2dx令x−3=3sintx=3sint+3dx=3costdt=∫2−π2π9[(sint)2+2sint+1]9(cost)2dt=81[∫2−π2π(sint)2(cost)2dt+2∫2−π2πsint(cost)2dt+∫2−π2π(cost)2dt]=81[∫2−π2π(sint)2(cost)2dt+0(奇函数)+∫2−π2π(cost)2dt]=81[2∫02π[1−(cost)2](cost)2dt+2∫02π(cost)2dt]=81[2[∫02π(cost)2dt−∫02π(cost)4dt]+2∫02π(cost)2dt]=81[2[21.2π−43.21.2π]+2.21.2π]=81.85π=8405π