ConcurrentHashMap 源码分析-扩容

190 阅读4分钟

一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第27天,点击查看活动详情

ConcurrentHashMap 源码分析-扩容

扩容时的线程安全

ConcurrentHashMap 扩容的时机和 HashMap 相同,都是在 put 方法中的最后一步检查是否需要扩容。

ConcurrentHashMap 扩容的思路:

  1. 首先需要把老数组的值全部拷贝到扩容之后的新数组上,先从数组的队尾开始拷贝;
  2. 拷贝数组的槽点时,先把原数组槽点锁住,保证原数组槽点不能操作,成功拷贝到新数组时,把原数组槽点赋值为转移节点;
  3. 这时如果有新数据正好需要 put 到此槽点时,发现槽点为转移节点,就会一直等待,所以在扩容完成之前,该槽点对应的数据是不会发生变化的;
  4. 从数组的尾部拷贝到头部,每拷贝成功一次,就把原数组中的节点设置成转移节点;
  5. 直到所有数组数据都拷贝到新数组时,直接把新数组整个赋值给数组容器,拷贝完成。

源码:

方法主要分成了两步:

  1. 新建新的空数组
  2. 移动拷贝每个元素到新数组中去
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating
        try {
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    int nextn = nextTab.length;
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        …………
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

Node<K,V>[] tab, Node<K,V>[] nextTab tab:原数组,nextTab:新数组

int n = tab.length, stride; 获取老数组的长度

if (nextTab == null) { } 判断新数组为空,初始化,大小为原数组的两倍,n << 1

int nextn = nextTab.length; 获取新数组的长度

ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); 代表转移节点,如果原数组上是转移节点,说明该节点正在被扩容

for (int i = 0, bound = 0;;) { } 无限自旋,i 的值会从原数组的最大值开始,慢慢递减到 0

if (--i >= bound || finishing) advance = false;结束循环的标志

if (i < 0 || i >= n || i + n >= nextn) { } if 任意条件满足说明拷贝结束了

if (finishing) { nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; }拷贝结束,直接赋值,因为每次拷贝完一个节点,都在原数组上放转移节点,拷贝完成的节点数据一定不会发生变化。原数组发现是转移节点,是不会操作的,会一直等待转移节点消失之后在进行操作

if (tabAt(tab, i) == f) { } 进行节点的拷贝

for (Node<K,V> p = f; p != lastRun; p = p.next) {
    int ph = p.hash; K pk = p.key; V pv = p.val;
    if ((ph & n) == 0)
        ln = new Node<K,V>(ph, pk, pv, ln);
    else
        hn = new Node<K,V>(ph, pk, pv, hn);
}

如果节点只有单个数据,直接拷贝,如果是链表,循环多次组成链表拷贝

setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); 在新数组位置上放置拷贝的值

setTabAt(tab, i, fwd); advance = true;在老数组位置上放上 ForwardingNode 节点

总结:

  1. 拷贝槽点时,会把原数组的槽点锁住;
  2. 拷贝成功之后,会把原数组的槽点设置成转移节点,这样如果有数据需要 put 到该节点时,发现该槽点是转移节点,会一直等待,直到扩容成功之后,才能继续 put;
  3. 从尾到头进行拷贝,拷贝成功就把原数组的槽点设置成转移节点;等扩容拷贝都完成之后,直接把新数组的值赋值给数组容器,之前等待 put 的数据才能继续 put;
  4. 扩容通过在原数组上设置转移节点,put 时碰到转移节点时会等待扩容成功之后才能 put ,保证了整个扩容过程中肯定是线程安全的。