简介
MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。
主要特点
- MongoDB 是一个面向文档存储的数据库,操作起来比较简单和容易。
- 你可以在MongoDB记录中设置任何属性的索引 (如:FirstName="Sameer",Address="8 Gandhi Road")来实现更快的排序。
- 你可以通过本地或者网络创建数据镜像,这使得MongoDB有更强的扩展性。
- 如果负载的增加(需要更多的存储空间和更强的处理能力) ,它可以分布在计算机网络中的其他节点上这就是所谓的分片。
- Mongo支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。
- MongoDb 使用update()命令可以实现替换完成的文档(数据)或者一些指定的数据字段 。
- Mongodb中的Map/reduce主要是用来对数据进行批量处理和聚合操作。
- Map和Reduce。Map函数调用emit(key,value)遍历集合中所有的记录,将key与value传给Reduce函数进行处理。
- Map函数和Reduce函数是使用Javascript编写的,并可以通过db.runCommand或mapreduce命令来执行MapReduce操作。
- GridFS是MongoDB中的一个内置功能,可以用于存放大量小文件。
- MongoDB允许在服务端执行脚本,可以用Javascript编写某个函数,直接在服务端执行,也可以把函数的定义存储在服务端,下次直接调用即可。
- MongoDB支持各种编程语言:RUBY,PYTHON,JAVA,C++,PHP,C#等多种语言。
- MongoDB安装简单。
补充
CAP定理(CAP theorem)
在计算机科学中, CAP定理(CAP theorem), 又被称作 布鲁尔定理(Brewer's theorem), 它指出对于一个分布式计算系统来说,不可能同时满足以下三点:
- 一致性(Consistency) (所有节点在同一时间具有相同的数据)
- 可用性(Availability) (保证每个请求不管成功或者失败都有响应)
- 分隔容忍(Partition tolerance) (系统中任意信息的丢失或失败不会影响系统的继续运作)
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,最多只能同时较好的满足两个。
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
- CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
- CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
- AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
BASE
BASE( Basically Available, Soft-state, Eventually Consistent )是NoSQL数据库通常对可用性及一致性的弱要求原则:
- Basically Available --基本可用
- Soft-state --软状态/柔性事务。 "Soft state" 可以理解为"无连接"的, 而 "Hard state" 是"面向连接"的
- Eventually Consistency -- 最终一致性, 也是 ACID 的最终目的。
基本概念
数据库概念
| SQL术语/概念 | MongoDB术语/概念 | 解释/说明 |
|---|---|---|
| database | database | 数据库 |
| table | collection | 数据库表/集合 |
| row | document | 数据记录行/文档 |
| column | field | 数据字段/域 |
| index | index | 索引 |
| table joins | 表连接,MongoDB不支持 | |
| primary key | primary key | 主键,MongoDB自动将_id字段设置为主键 |
数据类型
| 数据类型 | 描述 |
|---|---|
| String | 字符串。存储数据常用的数据类型。在 MongoDB 中,UTF-8 编码的字符串才是合法的。 |
| Integer | 整型数值。用于存储数值。根据你所采用的服务器,可分为 32 位或 64 位。 |
| Boolean | 布尔值。用于存储布尔值(真/假)。 |
| Double | 双精度浮点值。用于存储浮点值。 |
| Min/Max keys | 将一个值与 BSON(二进制的 JSON)元素的最低值和最高值相对比。 |
| Array | 用于将数组或列表或多个值存储为一个键。 |
| Timestamp | 时间戳。记录文档修改或添加的具体时间。 |
| Object | 用于内嵌文档。 |
| Null | 用于创建空值。 |
| Symbol | 符号。该数据类型基本上等同于字符串类型,但不同的是,它一般用于采用特殊符号类型的语言。 |
| Date | 日期时间。用 UNIX 时间格式来存储当前日期或时间。你可以指定自己的日期时间:创建 Date 对象,传入年月日信息。 |
| Object ID | 对象 ID。用于创建文档的 ID。 |
| Binary Data | 二进制数据。用于存储二进制数据。 |
| Code | 代码类型。用于在文档中存储 JavaScript 代码。 |
| Regular expression | 正则表达式类型。用于存储正则表达式。 |
ObjectId
ObjectId 类似唯一主键,可以很快的去生成和排序,包含 12 bytes,含义是:
- 前 4 个字节表示创建 unix 时间戳,格林尼治时间 UTC 时间,比北京时间晚了 8 个小时
- 接下来的 3 个字节是机器标识码
- 紧接的两个字节由进程 id 组成 PID
- 最后三个字节是随机数
时间戳
BSON 有一个特殊的时间戳类型用于 MongoDB 内部使用,与普通的 日期 类型不相关。 时间戳值是一个 64 位的值。其中:
- 前32位是一个 time_t 值(与Unix新纪元相差的秒数)
- 后32位是在某秒中操作的一个递增的
序数
在单个 mongod 实例中,时间戳值通常是唯一的。
日期
表示当前距离 Unix新纪元(1970年1月1日)的毫秒数。日期类型是有符号的, 负数表示 1970 年之前的日期。
MongoDB连接
使用MongoDB shell连接
mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]
- mongodb:// 这是固定的格式,必须要指定。
- username:password@ 可选项,如果设置,在连接数据库服务器之后,驱动都会尝试登录这个数据库
- host1 必须的指定至少一个host, host1 是这个URI唯一要填写的。它指定了要连接服务器的地址。如果要连接复制集,请指定多个主机地址。
- portX 可选的指定端口,如果不填,默认为27017
- /database 如果指定username:password@,连接并验证登录指定数据库。若不指定,默认打开 test 数据库。
- ?options 是连接选项。如果不使用/database,则前面需要加上/。所有连接选项都是键值对name=value,键值对之间通过&或;(分号)隔开
实践操作
数据库
-
创建数据库
use DATABASE_NAME如果数据库存在,切换到指定数据库。 否则会在插入数据时创建数据库。
使用
show dbs可以查看有哪些数据库 -
删除数据库
db.dropDatabase()删除当前数据库,默认为 test,你可以使用 db 命令查看当前数据库名。
集合
- 创建集合
db.createCollection(name, options)
- name: 要创建的集合名称
- options: 可选参数, 指定有关内存大小及索引的选项
options 可以是如下参数:
| 字段 | 类型 | 描述 |
|---|---|---|
| capped | 布尔 | (可选)如果为 true,则创建固定集合。固定集合是指有着固定大小的集合,当达到最大值时,它会自动覆盖最早的文档。 当该值为 true 时,必须指定 size 参数。 |
| autoIndexId | 布尔 | 3.2 之后不再支持该参数。(可选)如为 true,自动在 _id 字段创建索引。默认为 false。 |
| size | 数值 | (可选)为固定集合指定一个最大值,即字节数。 如果 capped 为 true,也需要指定该字段。 |
| max | 数值 | (可选)指定固定集合中包含文档的最大数量。 |
在插入文档时,MongoDB 首先检查固定集合的 size 字段,然后检查 max 字段。
也可以通过插入文档创建集合。
-
查看集合
show tables 或者 show collections -
删除集合
db.collection.drop()
文档
- 插入文档
db.COLLECTION_NAME.insert()
或
db.collection.insertOne()
或
db.collection.replaceOne()
db.collection.insertOne() 用于向集合插入一个新文档,语法格式如下:
db.collection.insertOne(
<document>,
{
writeConcern: <document>
}
)
db.collection.insertMany() 用于向集合插入一个多个文档,语法格式如下:
db.collection.insertMany(
[ <document 1> , <document 2>, ... ],
{
writeConcern: <document>,
ordered: <boolean>
}
)
参数说明:
- document:要写入的文档。
- writeConcern:写入策略,默认为 1,即要求确认写操作,0 是不要求。
- ordered:指定是否按顺序写入,默认 true,按顺序写入。
- 更新文档
db.collection.update(
<query>,
<update>,
{
upsert: <boolean>,
multi: <boolean>,
writeConcern: <document>
}
)
参数说明:
query : update的查询条件,类似sql update查询内where后面的。
update : update的对象和一些更新的操作符(如$,$inc...)等,也可以理解为sql update查询内set后面的
upsert : 可选,这个参数的意思是,如果不存在update的记录,是否插入objNew,true为插入,默认是false,不插入。
multi : 可选,mongodb 默认是false,只更新找到的第一条记录,如果这个参数为true,就把按条件查出来多条记录全部更新。
writeConcern :可选,抛出异常的级别。
- 删除文档
db.collection.remove(
<query>,
{
justOne: <boolean>,
writeConcern: <document>
}
)
参数说明:
query :(可选)删除的文档的条件。
justOne : (可选)如果设为 true 或 1,则只删除一个文档,如果不设置该参数,或使用默认值 false,则删除所有匹配条件的文档。
writeConcern :(可选)抛出异常的级别。
- 查询文档
db.collection.find(query, projection)
或者
db.col.find().pretty()
query :可选,使用查询操作符指定查询条件 可以传入多个条件
projection :可选,使用投影操作符指定返回的键。查询时返回文档中所有键值, 只需省略该参数即可(默认省略)。
| 操作 | 格式 | 范例 | RDBMS中的类似语句 |
|---|---|---|---|
| 等于 | {:} | db.col.find({"by":"菜鸟教程"}).pretty() | where by = '菜鸟教程' |
| 小于 | {:{$lt:}} | db.col.find({"likes":{$lt:50}}).pretty() | where likes < 50 |
| 小于或等于 | {:{$lte:}} | db.col.find({"likes":{$lte:50}}).pretty() | where likes <= 50 |
| 大于 | {:{$gt:}} | db.col.find({"likes":{$gt:50}}).pretty() | where likes > 50 |
| 大于或等于 | {:{$gte:}} | db.col.find({"likes":{$gte:50}}).pretty() | where likes >= 50 |
| 不等于 | {:{$ne:}} | db.col.find({"likes":{$ne:50}}).pretty() | where likes != 50 |
MongoDB AND 条件
MongoDB 的 find() 方法可以传入多个键(key),每个键(key)以逗号隔开,即常规 SQL 的 AND 条件。
语法格式如下:
>db.col.find({key1:value1, key2:value2}).pretty()
MongoDB OR 条件
MongoDB OR 条件语句使用了关键字 $or,语法格式如下:
>db.col.find(
{
$or: [
{key1: value1}, {key2:value2}
]
}
).pretty()
条件操作符
MongoDB中条件操作符有:
- (>) 大于 - $gt
- (<) 小于 - $lt
- (>=) 大于等于 - $gte
- (<= ) 小于等于 - $lte
$type 操作符
$type操作符是基于BSON类型来检索集合中匹配的数据类型,并返回结果。
分页
- limit
db.COLLECTION_NAME.find().limit(NUMBER) - skip
db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)
排序
在 MongoDB 中使用 sort() 方法对数据进行排序,sort() 方法可以通过参数指定排序的字段,并使用 1 和 -1 来指定排序的方式,其中 1 为升序排列,而 -1 是用于降序排列。
sort()方法基本语法如下所示:
>db.COLLECTION_NAME.find().sort({KEY:1})
索引
- 创建索引
db.collection.createIndex(keys, options)
db.col.createIndex({"title":1,"description":-1}) // 1 -1表示升降序
createIndex() 接收可选参数,可选参数列表如下:
| Parameter | Type | Description |
|---|---|---|
| background | Boolean | 建索引过程会阻塞其它数据库操作,background可指定以后台方式创建索引,即增加 "background" 可选参数。 "background" 默认值为false。 |
| unique | Boolean | 建立的索引是否唯一。指定为true创建唯一索引。默认值为false. |
| name | string | 索引的名称。如果未指定,MongoDB的通过连接索引的字段名和排序顺序生成一个索引名称。 |
| dropDups | Boolean | 3.0+版本已废弃。 在建立唯一索引时是否删除重复记录,指定 true 创建唯一索引。默认值为 false. |
| sparse | Boolean | 对文档中不存在的字段数据不启用索引;这个参数需要特别注意,如果设置为true的话,在索引字段中不会查询出不包含对应字段的文档.。默认值为 false. |
| expireAfterSeconds | integer | 指定一个以秒为单位的数值,完成 TTL设定,设定集合的生存时间。 |
| v | index version | 索引的版本号。默认的索引版本取决于mongod创建索引时运行的版本。 |
| weights | document | 索引权重值,数值在 1 到 99,999 之间,表示该索引相对于其他索引字段的得分权重。 |
| default_language | string | 对于文本索引,该参数决定了停用词及词干和词器的规则的列表。 默认为英语 |
| language_override | string | 对于文本索引,该参数指定了包含在文档中的字段名,语言覆盖默认的language,默认值为 language. |
- 查看集合索引
db.col.getIndexes()
- 查看集合索引大小
db.col.totalIndexSize()
- 删除集合所有索引
db.col.dropIndexes()
- 删除集合指定索引
db.col.dropIndex("索引名称")
聚合
MongoDB 中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。
aggregate() 方法的基本语法格式如下所示:
>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)
下表展示了一些聚合的表达式:
| 表达式 | 描述 | 实例 |
|---|---|---|
| $sum | 计算总和。 | db.mycol.aggregate([{group : {_id : "by_user", num_tutorial : {likes"}}}]) |
| $avg | 计算平均值 | db.mycol.aggregate([{group : {_id : "by_user", num_tutorial : {likes"}}}]) |
| $min | 获取集合中所有文档对应值得最小值。 | db.mycol.aggregate([{group : {_id : "by_user", num_tutorial : {likes"}}}]) |
| $max | 获取集合中所有文档对应值得最大值。 | db.mycol.aggregate([{group : {_id : "by_user", num_tutorial : {likes"}}}]) |
| $push | 将值加入一个数组中,不会判断是否有重复的值。 | db.mycol.aggregate([{group : {_id : "by_user", url : {url"}}}]) |
| $addToSet | 将值加入一个数组中,会判断是否有重复的值,若相同的值在数组中已经存在了,则不加入。 | db.mycol.aggregate([{group : {_id : "by_user", url : {url"}}}]) |
| $first | 根据资源文档的排序获取第一个文档数据。 | db.mycol.aggregate([{group : {_id : "by_user", first_url : {url"}}}]) |
| $last | 根据资源文档的排序获取最后一个文档数据 | db.mycol.aggregate([{group : {_id : "by_user", last_url : {url"}}}]) |
管道
管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。
MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。
表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。
这里我们介绍一下聚合框架中常用的几个操作:
- $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
- match使用MongoDB的标准查询操作。
- $limit:用来限制MongoDB聚合管道返回的文档数。
- $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
- $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
- $group:将集合中的文档分组,可用于统计结果。
- $sort:将输入文档排序后输出。
- $geoNear:输出接近某一地理位置的有序文档。
复制(副本集)
MongoDB复制是将数据同步在多个服务器的过程。复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性, 并可以保证数据的安全性。复制还允许您从硬件故障和服务中断中恢复数据。
- 保障数据的安全性
- 数据高可用性 (24*7)
- 灾难恢复
- 无需停机维护(如备份,重建索引,压缩)
- 分布式读取数据
原理
mongodb的复制至少需要两个节点。其中一个是主节点,负责处理客户端请求,其余的都是从节点,负责复制主节点上的数据。mongodb各个节点常见的搭配方式为:一主一从、一主多从。主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致。
副本集特征:
- N 个节点的集群
- 任何节点可作为主节点
- 所有写入操作都在主节点上
- 自动故障转移
- 自动恢复
副本集设置
在本教程中我们使用同一个MongoDB来做MongoDB主从的实验, 操作步骤如下:
- 关闭正在运行的MongoDB服务器。
- 现在我们通过指定 --replSet 选项来启动mongoDB。--replSet 基本语法格式如下:
mongod --port "PORT" --dbpath "YOUR_DB_DATA_PATH" --replSet "REPLICA_SET_INSTANCE_NAME"
- 添加成员
rs.add(HOST_NAME:PORT)
## 在主节点执行 db.isMaster() 判断
MongoDB的副本集与我们常见的主从有所不同,主从在主机宕机后所有服务将停止,而副本集在主机宕机后,副本会接管主节点成为主节点,不会出现宕机的情况。
分片
在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求。当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量。这时,我们就可以通过在多台机器上分割数据,使得数据库系统能存储和处理更多的数据。
- 复制所有的写入操作到主节点
- 延迟的敏感数据会在主节点查询
- 单个副本集限制在12个节点
- 当请求量巨大时会出现内存不足。
- 本地磁盘不足
- 垂直扩展价格昂贵
组成
-
Shard:
用于存储实际的数据块,实际生产环境中一个shard server角色可由几台机器组个一个replica set承担,防止主机单点故障
-
Config Server:
mongod实例,存储了整个 ClusterMetadata,其中包括 chunk信息。
-
Query Routers:
前端路由,客户端由此接入,且让整个集群看上去像单一数据库,前端应用可以透明使用。
备份与恢复
mongodump -h dbhost -d dbname -o dbdirectory
-
-h:
MongoDB 所在服务器地址,例如:127.0.0.1,当然也可以指定端口号:127.0.0.1:27017
-
-d:
需要备份的数据库实例,例如:test
-
-o:
备份的数据存放位置,例如:c:\data\dump,当然该目录需要提前建立,在备份完成后,系统自动在dump目录下建立一个test目录,这个目录里面存放该数据库实例的备份数据。
| 语法 | 描述 | 实例 |
|---|---|---|
| mongodump --host HOST_NAME --port PORT_NUMBER | 该命令将备份所有MongoDB数据 | mongodump --host runoob.com --port 27017 |
| mongodump --dbpath DB_PATH --out BACKUP_DIRECTORY | mongodump --dbpath /data/db/ --out /data/backup/ | |
| mongodump --collection COLLECTION --db DB_NAME | 该命令将备份指定数据库的集合。 | mongodump --collection mycol --db test |
mongorestore -h <hostname><:port> -d dbname <path>
-
--host <:port>, -h <:port>:
MongoDB所在服务器地址,默认为: localhost:27017
-
--db , -d :
需要恢复的数据库实例,例如:test,当然这个名称也可以和备份时候的不一样,比如test2
-
--drop:
恢复的时候,先删除当前数据,然后恢复备份的数据。就是说,恢复后,备份后添加修改的数据都会被删除,慎用哦!
-
:
mongorestore 最后的一个参数,设置备份数据所在位置,例如:c:\data\dump\test。
你不能同时指定 和 --dir 选项,--dir也可以设置备份目录。
-
--dir:
指定备份的目录
你不能同时指定 和 --dir 选项。
监控
-
mongostat查看mongo的状态 -
mongotop提供每个集合的水平的统计数据 参数--locks显示内容如下-
ns:
包含数据库命名空间,后者结合了数据库名称和集合。
-
db:
包含数据库的名称。名为 . 的数据库针对全局锁定,而非特定数据库。
-
total:
mongod花费的时间工作在这个命名空间提供总额。
-
read:
提供了大量的时间,这mongod花费在执行读操作,在此命名空间。
-
write:
提供这个命名空间进行写操作,这mongod花了大量的时间。
-
数据库引用
MongoDB 引用有两种:
- 手动引用(Manual References)
- DBRefs
DBRef的形式:
{ $ref : , $id : , $db : }
三个字段表示的意义为:
- $ref:集合名称
- $id:引用的id
- $db:数据库名称,可选参数
覆盖索引
官方的MongoDB的文档中说明,覆盖查询是以下的查询:
- 所有的查询字段是索引的一部分
- 所有的查询返回字段在同一个索引中
由于所有出现在查询中的字段是索引的一部分, MongoDB 无需在整个数据文档中检索匹配查询条件和返回使用相同索引的查询结果。因为索引存在于RAM中,从索引中获取数据比通过扫描文档读取数据要快得多。
同mysql
索引分析
MongoDB 查询分析可以确保我们所建立的索引是否有效,是查询语句性能分析的重要工具。
MongoDB 查询分析常用函数有:explain() 和 hint()。
使用 explain()
explain 操作提供了查询信息,使用索引及查询统计等。有利于我们对索引的优化。
接下来我们在 users 集合中创建 gender 和 user_name 的索引:
>db.users.ensureIndex({gender:1,user_name:1})
现在在查询语句中使用 explain :
>db.users.find({gender:"M"},{user_name:1,_id:0}).explain()
以上的 explain() 查询返回如下结果:
{
"cursor" : "BtreeCursor gender_1_user_name_1",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 0,
"nscanned" : 1,
"nscannedObjectsAllPlans" : 0,
"nscannedAllPlans" : 1,
"scanAndOrder" : false,
"indexOnly" : true,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"gender" : [
[
"M",
"M"
]
],
"user_name" : [
[
{
"$minElement" : 1
},
{
"$maxElement" : 1
}
]
]
}
}
现在,我们看看这个结果集的字段:
- indexOnly: 字段为 true ,表示我们使用了索引。
- cursor:因为这个查询使用了索引,MongoDB 中索引存储在B树结构中,所以这是也使用了 BtreeCursor 类型的游标。如果没有使用索引,游标的类型是 BasicCursor。这个键还会给出你所使用的索引的名称,你通过这个名称可以查看当前数据库下的system.indexes集合(系统自动创建,由于存储索引信息,这个稍微会提到)来得到索引的详细信息。
- n:当前查询返回的文档数量。
- nscanned/nscannedObjects:表明当前这次查询一共扫描了集合中多少个文档,我们的目的是,让这个数值和返回文档的数量越接近越好。
- millis:当前查询所需时间,毫秒数。
- indexBounds:当前查询具体使用的索引。
使用 hint()
虽然MongoDB查询优化器一般工作的很不错,但是也可以使用 hint 来强制 MongoDB 使用一个指定的索引。
这种方法某些情形下会提升性能。 一个有索引的 collection 并且执行一个多字段的查询(一些字段已经索引了)。
如下查询实例指定了使用 gender 和 user_name 索引字段来查询:
>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1})
可以使用 explain() 函数来分析以上查询:
>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1}).explain()
原子操作
mongodb不支持事务,所以,在你的项目中应用时,要注意这点。无论什么设计,都不要要求mongodb保证数据的完整性。但是mongodb提供了许多原子操作,比如文档的保存,修改,删除等,都是原子操作。
\