动态规划

110 阅读2分钟

一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第26天,点击查看活动详情。 ​

介绍

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。所以贪心解决不了动态规划的问题。

思路分析

对于动态规划问题,我将拆解为如下五步曲,这五步非常重要!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。这也是我为什么在动规五步曲里强调推导dp数组的重要性。 发出这样的问题之前,其实可以自己先思考这三个问题:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?
    public int fib(int n) {
        if (n < 2) return n;
        int a = 0, b = 1, c = 0;
        for (int i = 1; i < n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }