一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第21天,点击查看活动详情。
一、题目描述
根据 逆波兰表示法,求该后缀表达式的计算结果。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9 示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6 示例 3:
输入:tokens = ["10","6","9","3","+","-11","","/","","17","+","5","+"] 输出:22 解释: 该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
提示:
1 <= tokens.length <= 104 tokens[i] 要么是一个算符("+"、"-"、"*" 或 "/"),要么是一个在范围 [-200, 200] 内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。 逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
来源:力扣(LeetCode) 链接:leetcode-cn.com/problems/8Z…
二、解题思路
根据题目所知,输入的逆波兰表达式都是有效的,所以无需考虑特殊的场景。 既然是一道栈的题目,肯定要先创建一个stack,然后依次将元素入栈,但什么时候出栈呢? 后缀表达式是指算符写在后面,即当我们遇到操作符时,需要将操作符紧邻的前两项拿出来进行计算将结果重新加入栈中
做法如下:
开一个栈,然后从左到右扫描 遇到数字就 push 到栈中 遇到运算符,就从栈里取两个数出来,然后计算后再 push 进栈中(需要注意减法和除法的顺序) 最后栈顶的元素就是值
三、AC代码
class Solution {
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new LinkedList<Integer>();
int n = tokens.length;
for (int i = 0; i < n; i++) {
String token = tokens[i];
if (isNumber(token)) {
stack.push(Integer.parseInt(token));
} else {
int num2 = stack.pop();
int num1 = stack.pop();
switch (token) {
case "+":
stack.push(num1 + num2);
break;
case "-":
stack.push(num1 - num2);
break;
case "*":
stack.push(num1 * num2);
break;
case "/":
stack.push(num1 / num2);
break;
default:
}
}
}
return stack.pop();
}
public boolean isNumber(String token) {
return !("+".equals(token) || "-".equals(token) || "*".equals(token) || "/".equals(token));
}
}
四、总结
写题解不易,若对你有帮助,点赞评论再走吧。ヽ(✿゚▽゚)ノ,如有不足,请大家斧正。