一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第24天,点击查看活动详情。
Collection子接口之List
(1)Arraylist 和 Vector 的区别?
ArrayList
是List
的主要实现类,底层使用Object[ ]
存储,适用于频繁的查找工作,线程不安全 ;Vector
是List
的古老实现类,底层使用Object[ ]
存储,线程安全的。
(2)ArrayList和LinkedList的区别
-
是否保证线程安全:
ArrayList
和LinkedList
都是不同步的,也就是不保证线程安全; -
底层数据结构:
Arraylist
底层使用的是Object
数组;LinkedList
底层使用的是 双向链表 数据结构(JDK1.6 之前为循环链表,JDK1.7 取消了循环。) -
插入和删除是否受元素位置的影响:
ArrayList
采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行add(E e)
方法的时候,ArrayList
会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是 O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element)
)时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。LinkedList
采用链表存储,所以,如果是在头尾插入或者删除元素不受元素位置的影响(add(E e)
、addFirst(E e)
、addLast(E e)
、removeFirst()
、removeLast()
),近似 O(1),如果是要在指定位置i
插入和删除元素的话(add(int index, E element)
,remove(Object o)
) 时间复杂度近似为 O(n) ,因为需要先移动到指定位置再插入。
-
是否支持快速随机访问:
LinkedList
不支持高效的随机元素访问,而ArrayList
支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index)
方法)。 -
内存空间占用: ArrayList 的空 间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。
(3)ArrayList 的扩容机制
Collection子接口之Set
(1)comparable 和 Comparator 的区别
comparable
接口实际上是出自java.lang
包 它有一个compareTo(Object obj)
方法用来排序comparator
接口实际上是出自 java.util 包它有一个compare(Object obj1, Object obj2)
方法用来排序
一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo()
方法或compare()
方法,当我们需要对某一个集合实现两种排序方式,比如一个 song 对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo()
方法和使用自制的Comparator
方法或者以两个 Comparator 来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的 Collections.sort()
.
(2)无序性和不可重复性的含义是什么
1、什么是无序性?无序性不等于随机性 ,无序性是指存储的数据在底层数组中并非按照数组索引的顺序添加 ,而是根据数据的哈希值决定的。
2、什么是不可重复性?不可重复性是指添加的元素按照 equals()判断时 ,返回 false,需要同时重写 equals()方法和 HashCode()方法
(3)HashSet、LinkedHashSet 和 TreeSet 三者的异同
HashSet
、LinkedHashSet
和TreeSet
都是Set
接口的实现类,都能保证元素唯一,并且都不是线程安全的。HashSet
、LinkedHashSet
和TreeSet
的主要区别在于底层数据结构不同。HashSet
的底层数据结构是哈希表(基于HashMap
实现)。LinkedHashSet
的底层数据结构是链表和哈希表,元素的插入和取出顺序满足 FIFO。TreeSet
底层数据结构是红黑树,元素是有序的,排序的方式有自然排序和定制排序。- 底层数据结构不同又导致这三者的应用场景不同。
HashSet
用于不需要保证元素插入和取出顺序的场景,LinkedHashSet
用于保证元素的插入和取出顺序满足 FIFO 的场景,TreeSet
用于支持对元素自定义排序规则的场景。