Transformer详解

1,297 阅读9分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

Transformer

细节可以参考:zhuanlan.zhihu.com/p/90033981

翻译自:nlp.seas.harvard.edu/2018/04/03/…

Model Architecture

大部分有竞争力的神经序列转换模型都是Encoder-Decoder结构。Encoder负责将符号表示的输入序列映射为连续表征,得到了之后Decoder生成输出序列,一次生成一个element。模型是自回归,生成下一个element的时候需要上一个output作为额外的输入。

class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
    "Define standard linear + softmax generation step."
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return F.log_softmax(self.proj(x), dim=-1)

总体结构图:

Encoder and Decoder Stacks

Encoder

编码器是由个完全相同的层堆叠起来的。

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

在每两个子层中进行残差连接,随后是layer norm(也有batch norm)。

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

每个子层的输出是,其中是由子层本身实现的功能。在添加子层的输入和正则化之后,每个子层的输出我们都加一个。为了方便残差连接,模型中的所有子层和embedding层的

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

每层含有两个子层,第一层是多头注意力机制,第二层是简单的、position-wise的fully connected的FFN。

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

Decoder

解码器同样由6个一模一样的层堆叠构成。

class Decoder(nn.Module):
    "Generic N layer decoder with masking."
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

除了每个编码器中的两个子层外,解码器新增了第三个子层,它对编码器stack进行多头注意力。与编码器相似,我们在每个子层中使用残差连接,在此之间加个normalization。

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)
 
    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

我们也修改了解码器中自注意力层防止看到后面的位置(masked 多头注意力)。这种掩蔽与输出embedding被偏移一个位置的事实相结合,确保预测位置的时候只依赖已知的小于的位置。

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0

上图代码如图:

就是一个简单的上三角而已。

下图展示了如何mask掉后面的位置:

Attention

注意力可以被描述为映射 一个query和一系列key-value对儿 到一个输出,其中q, k, v和输出都是向量。输出可以看做是values的加权和,其中分配到每一个values的权重由query和对应的key的相似程度计算得来。

我们管这种特殊的注意力叫做“Scaled Dot-Product Attention”。输入由维度为的queries,keys和的values组成。将Query和所有的keys进行点乘,除以(为了计算更加稳定,防止分配到每个词的注意力分值过小)并且应用Softmax方法获得权重到values上面。

实践上我们将同时计算所有的queries,打包到一个矩阵Q中,Keys和Values同样被打包成K和V。计算公式如下:

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn

两种最常用的注意力方法是additive attention和dot-product(multiplicative) attention,点乘注意力和本文一致,除了缩放因子是, additive attention使用带单个隐藏层的前馈网络计算相似度函数。尽管二者复杂度不尽相同,但点乘法在实践中速度更快,空间有效性更高,因为它可以充分利用矩阵相乘的代码。尽管对较小的两种注意力差不多,但是如果更大的时候,additvie attention在没有缩放因子的情况下比点乘更好。我们怀疑是随着增大,矩阵的幅度就会变大,此时强迫softmax进行划分,每个条件就会分配到非常小的概率。

现在简单推导一下为什么方差是:

因此最好乘一个,进行缩放,使得对应的概率可以更接近1.

多头注意力机制允许模型从不同位置的不同表征子空间联合获取信息,只有一个头,averaging会抑制它。

投影是参数矩阵,在本文中,h=8个并行注意力层or头,其中每个d_k=d_v=d_{model/h=64。由于减少了每个头的维度,全部计算花销约等于全维度的单头注意力。

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]
        
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)

Applications of Attention in our Model

transformer在三个地方使用3种不同的多头注意力机制,

1)在encoder-decoder注意力层,query来自上一个decoder层,而memory的key和value来自encoder的输出,这使得解码器中的每个位置都能处理输入序列中的所有位置。这模仿了序列到序列模型中典型的编码器-解码器注意机制。

2)encoder中包含了自注意力层,在自注意力层中所有的queries,keys和values都来自于同一个地方,本例中,是encoder的上一层输出。encoder中的每个位置都可以注意到上一层encoder中的全部位置。

3)相似地,在decoder中的自注意力层允许decoder中的每个位置处理解码器中包含该位置的所有位置。我们需要防止信息在解码器中向左流动,以保持自回归的特性。我们在"scaled dot-product"内部通过masking out(设置负无穷,softmax时这里就是0)softmax输入中对应非法连接的所有值来实现。

Position-wise Feed-Forward Networks

除了注意力子层,encoder-decoder中的每一层都包含一个FFN,FFN被同等并分别应用到每个位置。这包含两个线性连接,并且他们之间有一个ReLU激活函数。

尽管线性变换在通过不同位置时是相同的,但是从一层到另一层的参数是不同的;另一种描述方式是两个kernel size为1的卷积层。输入和输出的维度是,并且内层含有个维度。

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

Embeddings and Softmax

和其他seq 转换模型相似,我们使用学习过的embeddings去转换输入输出token为维度等于的向量。我们也使用一般学习过的线性转换和softmax函数去转换decoder输出去预测下一个token的概率。在我们的模型中,我们共享相同的权重矩阵在两个embedding层和pre-softmax线性转换。在embedding层,我们使用乘以那些权重。

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

Positional Encoding

因为我们的模型不包括递归和卷积,为了让模型有序使用seq,我们必须注入一些相对或者绝对信息在seq的tokens中。为此,我们在encoder-decoder stack底部加入了位置编码到input embeddings。位置编码拥有相同的维度作为embedding,所以我们可以将二者相加。有许多位置编码的选择,见这里

在这里,我们使用sin和cos表示不同的频率:

其中pos是位置,i是维度。意思是,位置编码的每个维度都对应一个正弦曲线。波长来自几何级数从。我们选择这个方法因为我们假设它会通过相对位置允许模型很容易地学习,因为对于任意固定偏移量可以被一个线性方法来表示。

另外,我们应用dropout在embedding相加和encoder decoder stack的位置编码上。对于基础模型,我们使用

class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

下图展示了不同位置的sin波,奇数就是cos,偶数就是sin,不同维度的频率和偏移量也是不同的:

我们也实验测试过使用学习过的位置编码来代替,但是发现两种版本的测试结果几近相同。我们选择正弦曲线版因为它可以让模型外推到比训练中遇到的序列更长的序列长度。

Full Model

Here we define a function that takes in hyperparameters and produces a full model.

def make_model(src_vocab, tgt_vocab, N=6, 
               d_model=512, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))
    
    # This was important from their code. 
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model

Training

Batches and Masking

class Batch:
    "Object for holding a batch of data with mask during training."
    def __init__(self, src, trg=None, pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    
    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask

Training Loop

def run_epoch(data_iter, model, loss_compute):
    "Standard Training and Logging Function"
    start = time.time()
    total_tokens = 0
    total_loss = 0
    tokens = 0
    for i, batch in enumerate(data_iter):
        out = model.forward(batch.src, batch.trg, 
                            batch.src_mask, batch.trg_mask)
        loss = loss_compute(out, batch.trg_y, batch.ntokens)
        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        if i % 50 == 1:
            elapsed = time.time() - start
            print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %
                    (i, loss / batch.ntokens, tokens / elapsed))
            start = time.time()
            tokens = 0
    return total_loss / total_tokens

Training Data and Batching

使用的数据是WMT2014英语-德语数据集,包含4.5m句子对。

global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):
    "Keep augmenting batch and calculate total number of tokens + padding."
    global max_src_in_batch, max_tgt_in_batch
    if count == 1:
        max_src_in_batch = 0
        max_tgt_in_batch = 0
    max_src_in_batch = max(max_src_in_batch,  len(new.src))
    max_tgt_in_batch = max(max_tgt_in_batch,  len(new.trg) + 2)
    src_elements = count * max_src_in_batch
    tgt_elements = count * max_tgt_in_batch
    return max(src_elements, tgt_elements)

有看不懂看不清的可以评论私聊我哦