本文已参与「新人创作礼」活动,一起开启掘金创作之路。
Linux互斥锁
(一)互斥量
互斥量(mutex)从本质上来说是一把锁,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量上的锁。对互斥量进行加锁后,任何其他试图再次对互斥量加锁的线程将会被阻塞直到当前线程释放该互斥锁。如果释放互斥锁时有多个线程阻塞,所有在该互斥锁上的阻塞线程都会变成可运行状态,第一个变为可运行状态的线程可以对互斥量加锁,其他线程将会看到互斥锁依然被锁住,只能回去等待它重新变为可用。在这种方式下,每次只有一个线程可以向前运行。
在设计时需要规定所有的线程必须遵守相同的数据访问规则。只有这样,互斥机制才能正常工作。操作系统并不会做数据访问的串行化。如果允许其中的某个线程在没有得到锁的情况下也可以访问共享资源,那么即使其它的线程在使用共享资源前都获取了锁,也还是会出现数据不一致的问题。
互斥变量用pthread_mutex_t数据类型表示。在使用互斥变量前必须对它进行初始化,可以把它置为常量PTHREAD_MUTEX_INITIALIZER(只对静态分配的互斥量),也可以通过调用pthread_mutex_init函数进行初始化。如果动态地分配互斥量(例如通过调用malloc函数),那么在释放内存前需要调用pthread_mutex_destroy。
代码示例
#include<stdio.h>
#include<pthread.h>
#include<unistd.h>
int g_data = 0;
pthread_mutex_t mutex;
void *func1(void *arg)
{
printf("t1:%ld thread is create\n",(unsigned long)pthread_self());
printf("t1:param is %d\n",*((int *)arg));
pthread_mutex_lock(&mutex);
while(1){
printf("t1:%d\n",g_data++);
sleep(1);
if(g_data == 3){
pthread_mutex_unlock(&mutex);
printf("t1 quit ==========================\n");
pthread_exit(NULL);
}
}
}
void *func2(void *arg)
{
printf("t2:%ld thread is create\n",(unsigned long)pthread_self());
printf("t2:parma is %d\n",*((int *)arg));
while(1){
printf("t2:%d\n",g_data);
pthread_mutex_lock(&mutex);
g_data++;
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
int ret;
int param = 100;
pthread_t t1;
pthread_t t2;
pthread_mutex_init(&mutex,NULL);
ret = pthread_create(&t1,NULL,func1,(void *)¶m);
if(ret == 0){
printf("main:create t1 success\n");
}
ret = pthread_create(&t2,NULL,func2,(void *)¶m);
if(ret == 0){
printf("main:create t2 success\n");
}
printf("main:%ld\n",(unsigned long)pthread_self());
while(1){
printf("main:%d\n",g_data);
sleep(1);
}
pthread_join(t1,NULL);
pthread_join(t2,NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
运行结果
(二)线程死锁
线程死锁指的是线程需要使用的公共资源一直被其它线程占用,导致该线程一直处于“阻塞”状态,无法继续执行。
如下代码会产生死锁
#include<stdio.h>
#include<pthread.h>
#include<unistd.h>
int g_data = 0;
pthread_mutex_t mutex;
pthread_mutex_t mutex2;
void *func1(void *arg)
{
int i;
pthread_mutex_lock(&mutex);
sleep(1);
pthread_mutex_lock(&mutex2);
for(i=0;i<5;i++){
printf("t1:%ld thread is create\n",(unsigned long)pthread_self());
printf("t1:param is %d\n",*((int *)arg));
sleep(1);
}
pthread_mutex_unlock(&mutex);
}
void *func2(void *arg)
{
pthread_mutex_lock(&mutex2);
sleep(1);
pthread_mutex_lock(&mutex);
printf("t2:%ld thread is create\n",(unsigned long)pthread_self());
printf("t2:parma is %d\n",*((int *)arg));
pthread_mutex_unlock(&mutex);
}void *func3(void *arg)
{
pthread_mutex_lock(&mutex);
printf("t3:%ld thread is create\n",(unsigned long)pthread_self());
printf("t3:param is %d\n",*((int *)arg));
pthread_mutex_unlock(&mutex);
}
int main()
{
int ret;
int param = 100;
pthread_t t1;
pthread_t t2;
pthread_t t3;
pthread_mutex_init(&mutex,NULL);
pthread_mutex_init(&mutex2,NULL);
ret = pthread_create(&t1,NULL,func1,(void *)¶m);
if(ret == 0){
printf("main:create t1 success\n");
}
ret = pthread_create(&t2,NULL,func2,(void *)¶m);
if(ret == 0){
printf("main:create t2 success\n");
}ret =pthread_create(&t3,NULL,func3,(void *)¶m);
printf("main:%ld\n",(unsigned long)pthread_self());
pthread_join(t1,NULL);
pthread_join(t2,NULL);
pthread_mutex_destroy(&mutex);
pthread_mutex_destroy(&mutex2);
return 0;
}
运行结果
会一直卡在这里,形成死锁。
(三)条件变量
条件变量是线程另一可用的同步机制。条件变量给多个线程提供了一个会合的场所。条件变量与互斥量一起使用时,允许线程以无竞争的方式等待特定的条件发生。
条件本身是由互斥量保护的。线程在改变条件状态前必须首先锁住互斥量,其他线程在获得互斥量之前不会察觉到这种改变,因为必须锁定互斥量以后才能计算条件。
条件变量使用之前必须首先初始化,pthread_cond_t数据类型代表的条件变量可以用两种方式进行初始化,可以把常量PTHREAD_COND_INITIALIZER赋给静态分配的条件变量,但是如果条件变量是动态分配的,可以使用pthread_cond_destroy函数对条件变量进行去除初始化(deinitialize)。
代码示例
#include<stdio.h>
#include<unistd.h>
#include<pthread.h>
#include<stdlib.h>
int g_data = 0;
pthread_mutex_t mutex;// = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond;// = PTHREAD_COND_INITIALIZER;
void *func1(void *arg)
{
printf("t1:%ld thread is create\n",(unsigned long)pthread_self());
printf("t1:param is %d\n",*((int *)arg));
static int cnt = 0;
while(1){
pthread_cond_wait(&cond,&mutex);
printf("t1 is running ===================\n");
printf("t1:%d\n",g_data);
g_data = 0;
sleep(1);
if(cnt++ == 10){
exit(1);
}
}
}
void *func2(void *arg)
{
printf("t2:%ld thread is creaet\n",(unsigned long)pthread_self());
printf("t2:param is %d\n",*((int *)arg));
while(1){
printf("t2:%d\n",g_data);
pthread_mutex_lock(&mutex);
g_data++;
if(g_data == 3){
pthread_cond_signal(&cond);
} pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
int ret;
int param = 100;
pthread_t t1;
pthread_t t2;
pthread_mutex_init(&mutex,NULL);
pthread_cond_init(&cond,NULL);
ret = pthread_create(&t1,NULL,func1,(void *)¶m);
if(ret ==0){
// printf("main:create t1 success\n");
}
ret = pthread_create(&t2,NULL,func2,(void *)¶m);
if(ret ==0){
// printf("main:create t2 success\n");
}
//printf("main:%ld\n",(unsigned long)pthread_self());
pthread_join(t1,NULL);
pthread_join(t2,NULL); pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
return 0;
}