消息队列和事件循环:页面是怎么“活”起来的?
前面我们讲到了每个渲染进程都有一个主线程,并且主线程非常繁忙,既要处理 DOM,又要计算样式,还要处理布局,同时还需要处理 JavaScript 任务以及各种输入事件。要让这么多不同类型的任务在主线程中有条不紊地执行,这就需要一个系统来统筹调度这些任务,这个统筹调度系统就是我们今天要讲的消息队列和事件循环系统。
处理其他线程发送过来的任务
要想在线程运行过程中,能接收并执行新的任务,就需要采用事件循环机制。
能让其能够接收其他线程发送的消息,一个通用模式是使用消息队列。
消息队列是一种数据结构,可以存放要执行的任务。它符合队列“先进先出”的特点,也就是说要添加任务的话,添加到队列的尾部;要取出任务的话,从队列头部去取。
处理其他进程发送过来的任务
通过使用消息队列,我们实现了线程之间的消息通信。在 Chrome 中,跨进程之间的任务也是频繁发生的,那么如何处理其他进程发送过来的任务?
渲染进程专门有一个 IO 线程用来接收其他进程传进来的消息
消息队列中的任务类型
包含了很多内部消息类型,如输入事件(鼠标滚动、点击、移动)、微任务、文件读写、WebSocket、JavaScript 定时器等等。
除此之外,消息队列中还包含了很多与页面相关的事件,如 JavaScript 执行、解析 DOM、样式计算、布局计算、CSS 动画等。
以上这些事件都是在主线程中执行的,所以在编写 Web 应用时,你还需要衡量这些事件所占用的时长,并想办法解决单个任务占用主线程过久的问题。
页面使用单线程的缺点
第一个问题是如何处理高优先级的任务。
如果 DOM 发生变化,采用同步通知的方式,会影响当前任务的执行效率;如果采用异步方式,又会影响到监控的实时性。
那该如何权衡效率和实时性呢?
针对这种情况,微任务就应用而生了,下面我们来看看微任务是如何权衡效率和实时性的。
通常我们把消息队列中的任务称为宏任务,每个宏任务中都包含了一个微任务队列,在执行宏任务的过程中,如果 DOM 有变化,那么就会将该变化添加到微任务列表中,这样就不会影响到宏任务的继续执行,因此也就解决了执行效率的问题。
等宏任务中的主要功能都直接完成之后,这时候,渲染引擎并不着急去执行下一个宏任务,而是执行当前宏任务中的微任务,因为 DOM 变化的事件都保存在这些微任务队列中,这样也就解决了实时性问题。
第二个是如何解决单个任务执行时长过久的问题。
因为所有的任务都是在单线程中执行的,所以每次只能执行一个任务,而其他任务就都处于等待状态。如果其中一个任务执行时间过久,那么下一个任务就要等待很长时间。
针对这种情况,JavaScript 可以通过回调功能来规避这种问题,也就是让要执行的 JavaScript 任务滞后执行。至于浏览器是如何实现回调功能的,我们在后面的章节中再详细介绍。
实践:浏览器页面是如何运行的
你可以打开开发者工具,点击“Performance”标签,选择左上角的“start porfiling and load page”来记录整个页面加载过程中的事件执行情况。
WebAPI:setTimeout是如何实现的?
setTimeout。它就是一个定时器,用来指定某个函数在多少毫秒之后执行。
浏览器怎么实现 setTimeout
要了解定时器的工作原理,就得先来回顾下之前讲的事件循环系统,我们知道渲染进程中所有运行在主线程上的任务都需要先添加到消息队列,然后事件循环系统再按照顺序执行消息队列中的任务。下面我们来看看那些典型的事件:
- 当接收到 HTML 文档数据,渲染引擎就会将“解析 DOM”事件添加到消息队列中,
- 当用户改变了 Web 页面的窗口大小,渲染引擎就会将“重新布局”的事件添加到消息队列中。
- 当触发了 JavaScript 引擎垃圾回收机制,渲染引擎会将“垃圾回收”任务添加到消息队列中。
- 同样,如果要执行一段异步 JavaScript 代码,也是需要将执行任务添加到消息队列中。
以上列举的只是一小部分事件,这些事件被添加到消息队列之后,事件循环系统就会按照消息队列中的顺序来执行事件。
所以说要执行一段异步任务,需要先将任务添加到消息队列中。不过通过定时器设置回调函数有点特别,它们需要在指定的时间间隔内被调用,但消息队列中的任务是按照顺序执行的,所以为了保证回调函数能在指定时间内执行,你不能将定时器的回调函数直接添加到消息队列中。
在 Chrome 中除了正常使用的消息队列之外,还有另外一个消息队列,这个队列中维护了需要延迟执行的任务列表,包括了定时器和 Chromium 内部一些需要延迟执行的任务。所以当通过 JavaScript 创建一个定时器时,渲染进程会将该定时器的回调任务添加到延迟队列中。
处理完消息队列中的一个任务之后,就开始执行 ProcessDelayTask 函数。ProcessDelayTask 函数会根据发起时间和延迟时间计算出到期的任务,然后依次执行这些到期的任务。等到期的任务执行完成之后,再继续下一个循环过程。通过这样的方式,一个完整的定时器就实现了。
使用 setTimeout 的一些注意事项
1. 如果当前任务执行时间过久,会影响定时器任务的执行
通过 setTimeout 设置的回调任务被放入了消息队列中并且等待下一次执行,这里并不是立即执行的;要执行消息队列中的下个任务,需要等待当前的任务执行完成。
2. 如果 setTimeout 存在嵌套调用,那么系统会设置最短时间间隔为 4 毫秒
因为在 Chrome 中,定时器被嵌套调用 5 次以上,系统会判断该函数方法被阻塞了,如果定时器的调用时间间隔小于 4 毫秒,那么浏览器会将每次调用的时间间隔设置为 4 毫秒。
所以,一些实时性较高的需求就不太适合使用 setTimeout 了,比如你用 setTimeout 来实现 JavaScript 动画就不是一个很好的主意。你要使用 JavaScript 来实现动画效果,函数 requestAnimationFrame 就是个很好的选择。
3. 未激活的页面,setTimeout 执行最小间隔是 1000 毫秒
未被激活的页面中定时器最小值大于 1000 毫秒,也就是说,如果标签不是当前的激活标签,那么定时器最小的时间间隔是 1000 毫秒,目的是为了优化后台页面的加载损耗以及降低耗电量。
4. 延时执行时间有最大值
Chrome、Safari、Firefox 都是以 32 个 bit 来存储延时值的,32bit 最大只能存放的数字是 2147483647 毫秒,这就意味着,如果 setTimeout 设置的延迟值大于 2147483647 毫秒(大约 24.8 天)时就会溢出,那么相当于延时值被设置为 0 了,这导致定时器会被立即执行。
5. 使用 setTimeout 设置的回调函数中的 this 不符合直觉
如果被 setTimeout 推迟执行的回调函数是某个对象的方法,那么该方法中的 this 关键字将指向全局环境,而不是定义时所在的那个对象。
WebAPI:XMLHttpRequest是怎么实现的?
回调函数
将一个函数作为参数传递给另外一个函数,那作为参数的这个函数就是回调函数。
同步回调、异步回调
XMLHttpRequest 运作机制
第一步:创建 XMLHttpRequest 对象。
第二步:为 xhr 对象注册回调函数。
第三步:配置基础的请求信息。
第四步:发起请求。
XMLHttpRequest 使用过程中的“坑”
- 跨域问题
默认情况下,跨域请求是不被允许的
- HTTPS 混合内容的问题
HTTPS 混合内容是 HTTPS 页面中包含了不符合 HTTPS 安全要求的内容,比如包含了 HTTP 资源,通过 HTTP 加载的图像、视频、样式表、脚本等,都属于混合内容。
总结
setTimeout 是直接将延迟任务添加到延迟队列中,而 XMLHttpRequest 发起请求,是由浏览器的其他进程或者线程去执行,然后再将执行结果利用 IPC 的方式通知渲染进程,之后渲染进程再将对应的消息添加到消息队列中。