一:我们先来看一下他的创建过程
继承实现关系图
EventLoopGroup group = new NioEventLoopGroup();
通过上边的继承图可以看出,昨天使用EventLoopGroup来进行接收NioEventLoopGroup组来进行创建该对象;
public NioEventLoopGroup() {
this(0);
}
public NioEventLoopGroup(int nThreads) {
this(nThreads, (Executor) null);
}
public NioEventLoopGroup(int nThreads, Executor executor) {
this(nThreads, executor, SelectorProvider.provider());
}
接下来可以看到,如果不传入初始线程数量,那么默认这传递的是0,和一个选择提供者
public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,
final SelectStrategyFactory selectStrategyFactory) {
super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
}
最后这里就是在NioEventLoopGroup里面最后的增加就是增加了一个拒绝策略,接下来就会到其父类,也就是 MultithreadEventLoopGroup 进行数据初始化
protected MultithreadEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
Object... args) {
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, chooserFactory, args);
}
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}
可以查看此方法对之前的nThreads进行了判断,如果传入为0那么久在1和cpu核心*2 之中取一个最大的数量
protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
}
接下来又到了其父类MultithreadEventExecutorGroup~ 定义了一个默认执行选择器工场
protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
EventExecutorChooserFactory chooserFactory, Object... args) {
//判断线程核心~
checkPositive(nThreads, "nThreads");
if (executor == null) {
//线程前置任务执行器 传入线程工厂,返回线程工厂 因为都是 ThreadPerTaskExecutor 实现了Executor 这里只是初始化了 ThreadPerTaskExecutor里面的线程工场
executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
}
//创建事件执行器,根据线程
children = new EventExecutor[nThreads];
//初始事件执行器
for (int i = 0; i < nThreads; i ++) {
boolean success = false;
try {
//这里传入的executor 是线程前置任务执行器 args 是选择器选择其工厂拒绝策略
//这里此时此刻返回的是NioEventLoop 初始化了arg参数和Executor 为EventLoop 所以此时Children 就是事件执行组
children[i] = newChild(executor, args);
success = true;
} catch (Exception e) {
// TODO: Think about if this is a good exception type
throw new IllegalStateException("failed to create a child event loop", e);
} finally {
//正常时不会走到这里的 一些停止和中断策略
if (!success) {
for (int j = 0; j < i; j ++) {
children[j].shutdownGracefully();
}
for (int j = 0; j < i; j ++) {
EventExecutor e = children[j];
try {
while (!e.isTerminated()) {
e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
}
} catch (InterruptedException interrupted) {
// Let the caller handle the interruption.
Thread.currentThread().interrupt();
break;
}
}
}
}
}
//事件执行器选择工场, 传入EventLoop[] 或者说Executor[] 然后将其多线程事件执行组的选择器进行初始化
//这个其实就是拿是否是2的倍数来进行判断的工场方法,然后两个选择一个 来进行创建选择器
chooser = chooserFactory.newChooser(children);
final FutureListener<Object> terminationListener = new FutureListener<Object>() {
@Override
public void operationComplete(Future<Object> future) throws Exception {
if (terminatedChildren.incrementAndGet() == children.length) {
terminationFuture.setSuccess(null);
}
}
};
//给事件执行器添加终止监听器
for (EventExecutor e: children) {
e.terminationFuture().addListener(terminationListener);
}
Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
Collections.addAll(childrenSet, children);
//初始化只读事件执行器
readonlyChildren = Collections.unmodifiableSet(childrenSet);
}
这里其实就是真正初始化NioEventLoopGroup的地方了,这里创建了事件执行器,然后又将EventLoop赋值给时间执行器数组,然后又通过children创建选择器,然后在children添加终止操作,最后返回只读EventLoop