一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第3天,点击查看活动详情。
前言
每日一题,轻松解题
每日一题为刷题系列 每日刷一题LeetCode题,并且对题目进行分析,分享思路。
正文
:每一个查询的最大美丽值
难度:中等
题目要求:
给你一个二维整数数组 items ,其中 items[i] = [pricei, beautyi] 分别表示每一个物品的 价格 和 美丽值 。
同时给你一个下标从 0 开始的整数数组 queries 。对于每个查询 queries[j] ,你想求出价格小于等于 queries[j] 的物品中,最大的美丽值 是多少。如果不存在符合条件的物品,那么查询的结果为 0 。
请你返回一个长度与 queries 相同的数组 answer,其中 answer[j]是第 j 个查询的答案。
举个例子
输入:items = [[1,2],[3,2],[2,4],[5,6],[3,5]], queries = [1,2,3,4,5,6]
输出:[2,4,5,5,6,6]
解释:
- queries[0]=1 ,[1,2] 是唯一价格 <= 1 的物品。所以这个查询的答案为 2 。
- queries[1]=2 ,符合条件的物品有 [1,2] 和 [2,4] 。
它们中的最大美丽值为 4 。
- queries[2]=3 和 queries[3]=4 ,符合条件的物品都为 [1,2] ,[3,2] ,[2,4] 和 [3,5] 。
它们中的最大美丽值为 5 。
- queries[4]=5 和 queries[5]=6 ,所有物品都符合条件。
所以,答案为所有物品中的最大美丽值,为 6 。
:解题
方法一 : 排序 + 二分查找
二分查找
二分查找的实现原理非常简单,首先要有一个有序的列表。但是如果没有,则该怎么办?可以使用排序算法进行排序。
以升序数列为例,比较一个元素与数列中的中间位置的元素的大小,如果比中间位置的元素大,则继续在后半部分的数列中进行二分查找;如果比中间位置的元素小,则在数列的前半部分进行比较;如果相等,则找到了元素的位置。每次比较的数列长度都会是之前数列的一半,直到找到相等元素的位置或者最终没有找到要找的元素。
我们先来想象一下,如果数列中有 3 个数,则先与第 2 个数进行比较,如果比第 2 个数大,则与第 2 个数右边的数列进行二分查找,这时这个数列就剩下一个数了,直接比较是否相等即可。所以在 3 个数的时候最多比较两次。
同理,在有 4 个数的时候,我们与中间数进行比较,一般中间数是首加末除以 2 算出来的,这时我们算出来的中间数是 (1+4)/2 等于 2,所以我们把要查找的数与第 2 个数比较,若比第 2 个数小,则直接与第 1 个数比较;否则与后面两个数进行二分查找,这时的中间数是 (3+4)/2 等于 3,也就是后半部分的第 1 个数。再接着进行比较,相等则找到相应的元素,小于则没有这个数(因为左边所有的数都已经判断过了),大于则继续向右查找。所以在 4 个数的时候最多比较 3 次。
以此类推,在 5 个数的时候最多查找 3 次,在 6 个数的时候也是最多查找 3 次。
解题思路:
-
对物品按价格进行递增排序;
-
计算前缀数组max,max[i]代表[0,i]区间的最大值;
-
对于每个查询q,二分查找找到<= q的最后一个物品位置i,并得到max[i]的值记录结果中;
-
如果找不到<= q的i,则结果为0
编辑代码:
var maximumBeauty = function(items, queries) {
items.sort((a,b) => a[0] - b[0]);
let res = queries.slice().fill(0);
let max = [];
let maxVal = -1;
for (let [a,b] of items) {
// price, beauty
maxVal = Math.max(maxVal, b);
max.push(maxVal);
}
for (let i=0; i<queries.length; i++) {
let l = 0, r = items.length - 1;
while (l < r) {
let m = Math.ceil((l + r)/2);
if (items[m][0] <= queries[i]) l = m;
else r = m - 1;
}
if (items[l][0] <= queries[i]) res[i] = max[l];
}
return res;
};
总结
无论做什么分析最重要,其中我们分析了题目,分析了解题思路,其实在分析完解题思路后,代码其实就是很简单的事情了,养成习惯,无论做什么之前,都要进行分析,这样有助于你更快更好的完成这件事。