一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第1天,点击查看活动详情。
1 递归
1.1 递归的基本概念
递归是一种解决问题的方法,它将问题不断的分为更小的子问题,通过处理普通的子问题来解决问题。递归函数是直接调用自己或通过一系列语句间接调用自己的函数。需要注意的是,递归函数每次调用自己时,都会将原问题进行简化,最终较小问题的序列必须收敛于基本情况,解决问题,终止递归。利用递归可以非常优雅的解决一些复杂问题。很多数学函数就是递归定义的,比如使用递归定义的阶乘函数:
尽管这个定义是递归的,但它不是无限循环无法终止的。事实上,利用此函数可以非常简单的计算阶乘。例如计算 ,根据定义,有 ,接下来我们需要解决 ,再次应用定义 3! = 4(2!) = 3[(2)(2−1)!] = 3(2)(1!),继续此过程,最后我们需要计算 ,而根据定义 ,计算过程就结束了:
可以看到,递归定义并非是无限循环的,因为每次应用定义,程序都会将问题分解为更简单的子问题,在阶乘函数示例中,即为计算较小数的阶乘,直到计算,这不需要再次应用递归即可求解。当递归到底时,我们得到一个可以直接计算的闭合表达式,也被称为递归的“基本情况”。而函数调用自身来执行子任务时,被称为“递归情况”。
1.2 递归的重要性
递归函数是从数学中借鉴的一种重要的编程技术,通常使用递归可以极大的降低代码量,在许多可以分解为子问题的任务中非常有用,例如,排序、遍历和搜索等通常可以借助递归方法快速的给出解决方案。
1.3 递归三原则
和许多算法一样,递归同样有着需要遵守的重要原则,称为递归三原则:
- 递归算法必须有基本情况;
- 递归算法必须改变状态并逐渐收敛于基本情况;
- 递归算法必须包含递归情况,能够递归的调用自身。
需要注意的是,递归的核心思想并不是循环,而是将问题分解成更小、更容易解决的子问题。
1.4 递归的应用
递归在程序设计中有着十分重要的作用,以下是一些常用到递归的实际场景:
- 斐波那契数列、阶乘计算等数学问题;
- 归并排序、快速排序;
- 二分查找;
- 树和图的遍历以及相关问题;
- 汉诺塔。
2 递归示例
本节中,我们将从简单的列表求和问题入手,了解递归算法的使用方式。
列表求和
列表求和是十分简单的问题,用来了解递归算法的思想再合适不过了。例如我们需要计算列表 [1, 2, 3, 4, 5] 的和,如果利用循环函数计算,则可以编写如下代码计算列表中所有数之和:
def sum_list(list_data):
result = 0
for i in range(list_data):
result += i
return result
如果不使用循环,我们该如何解决这一问题呢?我们可以写出求和过程 ,而根据加法交换律,计算过程也可以写为 ,这时我们就可以很清楚的看到,列表的数据总和等于列表第一个元素加上其余元素:
使用 python 实现以上等式如下:
def sum_list(list_data):
if len(num_list) == 1:
return list_data[0]
else:
return list_data[0] + sum_list(list_data[1:])
在代码中,首先给出了函数退出的条件,这就是递归函数的基本情况,在示例中就是说,长度为 1 的列表,其元素和就是列表中的数。不满足退出条件,sum_list 则会调用自己,这就是递归函数的递归情况,也是其称为递归函数的原因。
在下图(a)中,可以看到求解 [1, 2, 3, 4, 5] 时的递归调用过程,每次递归调用都是在解决一个更接近基本情况的问题,直到问题不能被进一步简化。
当问题无法简化时,开始拼接所有子问题的解,下图(b)展示递归函数 sum_list 在返回一系列调用结果时所进行的加法操作,当返回到顶层时,就解决了最初的问题。