Offer 驾到,掘友接招!我正在参与2022春招打卡活动,点击查看活动详情。
一、题目描述:
给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans 作为答案。
示例 1:
输入:n = 2
输出:[0,1,1]
解释:
0 --> 0
1 --> 1
2 --> 10
示例 2:
输入:n = 5
输出:[0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
提示:
-
0 <= n <= 10^5 进阶:
-
很容易就能实现时间复杂度为 的解决方案,你可以在线性时间复杂度 内用一趟扫描解决此问题吗?
-
你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount )
二、思路分析:
有点找规律的性质。 任意一个dp[i]等于离他最近的一个2的整数次方数的值+dp[i-2的整数次方数] 每个2的整数次方数的值都为1;
动态规划:
- 初始值:dp[0] = 0, dp[1] = 1;
- 转移函数 dp[i] = dp[cur]+dp[i-cur];或者dp[i] = 1;
- 结果: dp
三、AC 代码:
class Solution {
public:
vector<int> countBits(int num) {
if(num==0) return {0};
vector<int> dp(num+1,0);
dp[1] = 1;
int cur = 1;
for(int i = 2;i<=num;++i){
if(i/cur==2&&i%cur==0){
dp[i] = 1;
cur = i;
}
else dp[i] = dp[cur]+dp[i-cur];
}
return dp;
}
};
四、总结:
纯粹就是数学知识,找到规律就好说,找不到就gg。
五、参考:
卑鄙的异乡人,巧妙的动态规划(图解过程) - 比特位计数 - 力扣(LeetCode) (leetcode-cn.com)