Java基础知识总结(一)

239 阅读17分钟

1.java面向对象

两者的主要区别在于解决问题的方式不同:

  • 面向过程把解决问题的过程拆成一个个方法,通过一个个方法的执行解决问题。
  • 面向对象会先抽象出对象,然后用对象执行方法的方式解决问题。

另外,面向对象开发的程序一般更易维护、易复用、易扩展

2.多态的好处?举个例子

多态,顾名思义,表示一个对象具有多种的状态,具体表现为父类的引用指向子类的实例。 多态的前提:

  1. 子父类的继承关系
  2. 方法的重写
  3. 父类引用指向子类对象

动态绑定:运行期间调用的方法,是根据其具体的类型

多态的特点:

  • 对象类型和引用类型之间具有继承(类)/实现(接口)的关系;
  • 引用类型变量发出的方法调用的到底是哪个类中的方法,必须在程序运行期间才能确定;
  • 多态不能调用“只在子类存在但在父类不存在”的方法;
  • 如果子类重写了父类的方法,真正执行的是子类覆盖的方法,如果子类没有覆盖父类的方法,执行的是父类的方法。

多态的优点:

  1. 消除类型之间的耦合关系
  2. 可替换性
  3. 可扩充性
  4. 接口性
  5. 灵活性
  6. 简化性

多态的缺点: 无法直接访问子类特有的成员和成员方法。

3.JVM垃圾回收机制

GC Root
  1. 栈;
  2. 本地方法区;
  3. 方法区; 直接引用或间接引用的堆内的对象不允许删除。
GC 算法
  1. 标记-清理:缺点为容易产生内存碎片;
  2. 标记-整理:缺点为资源开销较大;
  3. 复制回收:缺点为需要2倍内存; 实际的GC,是把堆进行了划分。其中Young区,S0:S1:E=1:1:8,默认的配置,符合对象“朝生夕死”的规律。模型如下:
  • Young GC:当Eden区快要满的时候,使用复制回收算法,把未标记的对象复制到S0区,然后清理E区和S1区;当下次E区快满时,将E区 + S0区幸存对象复制到S1区。然后是交替往复的工作,即E + S1-->S0,E + S0-->S1,E + S1-->S0...
  • Full GC:如果对象被回收1次,其age加1。如果age>=15,则不放入S区,而是放入Old区。此外,Old区还存放大对象,避免多次复制导致的系统开销。如果Old区满了,则会触发Old GC,一般会伴随Young GC,称之为Full GC。此时,会stop the work,采用标记-清理或标记-整理算法进行垃圾回收。
  • 总结:Young GC主要采用复制回收算法,Full GC采用标记-清理或标记-整理算法。新生代的垃圾回收器有ParNew,老年代的垃圾回收器有CMS。

4.java如何处理异常的?有哪些异常?

java有哪些异常

image.png 图片来自:javaguide.cn/java/basis/…

image.png 图片来自:chercher.tech/java-progra…

在 Java 中,所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类:

  • Exception :程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 Checked Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。
  • Error :Error 属于程序无法处理的错误 ,我们没办法通过 catch 来进行捕获不建议通过catch捕获 。例如Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。

Checked Exception 即受检查异常,Java 代码在编译过程中,如果受检查异常没有被 catch/throw 处理的话,就没办法通过编译 。 除了RuntimeException及其子类以外,其他的Exception类及其子类都属于受检查异常 。常见的受检查异常有: IO 相关的异常、ClassNotFoundException 、SQLException...。

Unchecked Exception 即 不受检查异常 ,Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。

RuntimeException 及其子类都统称为非受检查异常,例如:NullPointerExceptionNumberFormatException(字符串转换为数字)、ArrayIndexOutOfBoundsException(数组越界)、ClassCastException(类型转换错误)、ArithmeticException(算术错误)等。

java如何捕捉和处理异常的

在编译生成的字节码中,每个方法都附带一个异常表。异常表中的每一个条目代表一个异常处理器,并且由from指针,to指针,target指针以及所捕获的异常类型构成。这些指针的值是字节码索引,用以定位字节码。

其中,from指针和to指针标识了该异常处理器所监控的范围,例如try代码块所覆盖的范围。target指针则指向异常处理器的起始位置,例如catch代码块的起始位置。

当程序触发异常时,Java虚拟机会从上至下遍历异常表中的所有条目。当触发异常的字节码的索引值在某个异常表条目的监控范围,Java虚拟机会判断所抛出的异常和该条目想要捕获的异常是否匹配。如果匹配,Java虚拟机会将控制流转移至该条目target指针指向的字节码。

如果遍历完所有异常表条目,Java虚拟机仍未匹配到异常处理器,那么它会弹出当前方法对应的Java栈帧,并且在调用者中重复上述操作。在最坏情况下,Java虚拟机需要遍历当前线程Java栈上所有方法的异常表。

针对异常执行路径,Java编译器会生成一个或多个异常表条目,监控整个try-catch代码块,并且捕获所有种类的异常。这些异常表条目的target指针将指向另一份复制的finally代码块。并且,在这个finally代码块的最后,Java编译器会重新抛出所捕获的异常。

可见,一共有三份finally代码块。其中,前两份分别位于try代码块和catch代码块的正常执行路径出口。最后一份则作为异常处理器,监控try代码块以及catch代码块。它将捕获try代码块触发的未被catch代码块捕获的异常,以及catch代码块触发的异常。

有个小问题?如果catch代码块捕获了异常,并且出发了另一个异常,那么finally捕获并且重抛的异常是哪个呢?答案是后者。也就是所原本的异常便会被忽略掉,不易于代码调试。

5. spring有用过吗?

6.tcp和udp的区别?三次握手和四次挥手的过程

TCPUDP备注
面向连接;面向无连接;TCP提供了检查和重传机制,序号标示,滑动窗口,确认应答。
提供可靠服务;不保证可靠;
点对点;一对一,多对一,多对多
资源消耗较高;资源消耗较少;
实时性强;
  • TCP的主要特点是:

    • 面向连接。
    • 每一条TCP连接只能是点对点的(一对一)。
    • 提供可靠交付的服务(无差错,不丢失,不重复,且按序到达)(校验和、重传控制、序号标识、滑动窗口、确认应答实现可靠传输。如丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。)。
    • 提供全双工通信。
    • 面向字节流。
  • UDP的主要特点是:

    • 无连接。
    • 尽最大努力交付(不保证可靠交付)。
    • 面向报文。
    • 无拥塞控制。
    • 支持一对一、一对多、多对一和多对多的交互通信。
    • 首部开销小(只有四个字段:源端口、目的端口、长度、检验和)。

采用TCP,一旦发生丢包,TCP会将后续的包缓存起来,等前面的包重传并接收到后再继续发送,延时会越来越大。
UDP对实时性要求较为严格的情况下,采用自定义重传机制,能够把丢包产生的延迟降到最低,尽量减少网络问题对游戏性造成影响。

TCP的三次握手:

  • 第一次握手:建立连接时,客户端发送SYN(请求同步)包到服务器,并进入SYN_SENT(请求连接)状态,等待服务器确认;
  • 第二次握手:服务器收到收到SYN包,必须确认客户端的SYN(x+1),同时自己也发送一个SYN包(SYN=y),即SYN+ACK包,此时服务器进入SYN_RECV(SYN派遣)状态;
  • 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。客户端与服务器才正式开始传输数据。
  • 理想状态下,TCP连接一旦建立,在通信双方中任何一方主动关闭连接之前,TCP连接都将被一直保持下去。

TCP的四次挥手:

  • 第一次挥手:主动关闭方调用close,会发送一个长度为0的数据包以及FIN(结束标志),用来关闭主动方到被动关闭方的数据传送(注意:此时主动关闭方还可以接受数据);
  • 第二次挥手:被动关闭方收到FIN包,发送一个ACK给对方,确认序号为收到序号+1;
  • 第三次挥手:被动关闭方发送一个FIN,用来关闭被动关闭方到主动关闭方到数据传送;
  • 第四次挥手:主动关闭方收到FIN后,发送一个ACK给被动关闭方,确认序号为收到序号+1,至此,完成四次挥手。

7. 七层协议有哪些

8.数据库中的存储过程?

9.数据库的索引,哪些字段是个建索引?

10. drop、truncate、 delete的区别

用法不同

truncate 和不带 where 子句的 delete、以及 drop 都会删除表内的数据,但是 truncate 和 delete 只删除数据不删除表的结构(定义),执行 drop 语句,此表的结构也会删除,也就是执行 drop 之后对应的表不复存在。

属于不同的数据库语言

truncate 和 drop 属于 DDL(数据定义语言)语句,操作立即生效,原数据不放到 rollback segment 中,不能回滚,操作不触发 trigger。而 delete 语句是 DML (数据库操作语言)语句,这个操作会放到 rollback segement 中,事务提交之后才生效。

执行速度不同

一般来说:drop > truncate > delete(这个我没有设计测试过)。

delete命令执行的时候会产生数据库的binlog日志,而日志记录是需要消耗时间的,但是也有个好处方便数据回滚恢复。

truncate命令执行的时候不会产生数据库日志,因此比delete要快。除此之外,还会把表的自增值重置和索引恢复到初始大小等。

drop命令会把表占用的空间全部释放掉。

Tips:你应该更多地关注在使用场景上,而不是执行效率。

11. 为什么会产生死锁?

什么是死锁

所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。 因此我们举个例子来描述,如果此时有一个线程A,按照先锁a再获得锁b的的顺序获得锁,而在此同时又有另外一个线程B,按照先锁b再锁a的顺序获得锁。

产生死锁的原因

a. 竞争资源

系统中的资源可以分为两类: 可剥夺资源,是指某进程在获得这类资源后,该资源可以再被其他进程或系统剥夺,CPU和主存均属于可剥夺性资源; 另一类资源是不可剥夺资源,当系统把这类资源分配给某进程后,再不能强行收回,只能在进程用完后自行释放,如磁带机、打印机等。 产生死锁中的竞争资源之一指的是竞争不可剥夺资源(例如:系统中只有一台打印机,可供进程P1使用,假定P1已占用了打印机,若P2继续要求打印机打印将阻塞) 产生死锁中的竞争资源另外一种资源指的是竞争临时资源(临时资源包括硬件中断、信号、消息、缓冲区内的消息等),通常消息通信顺序进行不当,则会产生死锁。

b. 进程间推进顺序非法

若P1保持了资源R1,P2保持了资源R2,系统处于不安全状态,因为这两个进程再向前推进,便可能发生死锁 例如,当P1运行到P1:Request(R2)时,将因R2已被P2占用而阻塞;当P2运行到P2:Request(R1)时,也将因R1已被P1占用而阻塞,于是发生进程死锁。

死锁产生的 4 个必要条件

产生死锁的必要条件:

  • 互斥条件:进程要求对所分配的资源进行排它性控制,即在一段时间内某资源仅为一进程所占用。
  • 请求和保持条件:当进程因请求资源而阻塞时,对已获得的资源保持不放。
  • 不剥夺条件:进程已获得的资源在未使用完之前,不能剥夺,只能在使用完时由自己释放。
  • 环路等待条件:在发生死锁时,必然存在一个进程--资源的环形链。
解决死锁的基本方法
预防死锁:

资源一次性分配:一次性分配所有资源,这样就不会再有请求了:(破坏请求条件)
只要有一个资源得不到分配,也不给这个进程分配其他的资源:(破坏请保持条件)
可剥夺资源:即当某进程获得了部分资源,但得不到其它资源,则释放已占有的资源(破坏不可剥夺条件)
资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反(破坏环路等待条件)

1、以确定的顺序获得锁

如果必须获取多个锁,那么在设计的时候需要充分考虑不同线程之前获得锁的顺序。按照上面的例子,两个线程获得锁的时序图如下:

image.png 如果此时把获得锁的时序改成: image.png

那么死锁就永远不会发生。 针对两个特定的锁,开发者可以尝试按照锁对象的hashCode值大小的顺序,分别获得两个锁,这样锁总是会以特定的顺序获得锁,那么死锁也不会发生。问题变得更加复杂一些,如果此时有多个线程,都在竞争不同的锁,简单按照锁对象的hashCode进行排序(单纯按照hashCode顺序排序会出现“环路等待”),可能就无法满足要求了,这个时候开发者可以使用银行家算法,所有的锁都按照特定的顺序获取,同样可以防止死锁的发生,该算法在这里就不再赘述了,有兴趣的可以自行了解一下。

2、超时放弃

当使用synchronized关键词提供的内置锁时,只要线程没有获得锁,那么就会永远等待下去,然而Lock接口提供了boolean tryLock(long time, TimeUnit unit) throws InterruptedException方法,该方法可以按照固定时长等待锁,因此线程可以在获取锁超时以后,主动释放之前已经获得的所有的锁。通过这种方式,也可以很有效地避免死锁。 还是按照之前的例子,时序图如下:

image.png

避免死锁
  • 预防死锁的几种策略,会严重地损害系统性能。因此在避免死锁时,要施加较弱的限制,从而获得 较满意的系统性能。由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全的状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法。

  • 银行家算法:首先需要定义状态和安全状态的概念。系统的状态是当前给进程分配的资源情况。因此,状态包含两个向量Resource(系统中每种资源的总量)和Available(未分配给进程的每种资源的总量)及两个矩阵Claim(表示进程对资源的需求)和Allocation(表示当前分配给进程的资源)。安全状态是指至少有一个资源分配序列不会导致死锁。当进程请求一组资源时,假设同意该请求,从而改变了系统的状态,然后确定其结果是否还处于安全状态。如果是,同意这个请求;如果不是,阻塞该进程知道同意该请求后系统状态仍然是安全的。

检测死锁

首先为每个进程和每个资源指定一个唯一的号码; 然后建立资源分配表和进程等待表。

解除死锁

当发现有进程死锁后,便应立即把它从死锁状态中解脱出来,常采用的方法有:

剥夺资源:从其它进程剥夺足够数量的资源给死锁进程,以解除死锁状态; 撤消进程:可以直接撤消死锁进程或撤消代价最小的进程,直至有足够的资源可用,死锁状态.消除为止;所谓代价是指优先级、运行代价、进程的重要性和价值等。

死锁检测

1、Jstack命令

jstack是java虚拟机自带的一种堆栈跟踪工具。jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息。 Jstack工具可以用于生成java虚拟机当前时刻的线程快照。线程快照是当前java虚拟机内每一条线程正在执行的方法堆栈的集合,生成线程快照的主要目的是定位线程出现长时间停顿的原因,如线程间死锁、死循环、请求外部资源导致的长时间等待等。 线程出现停顿的时候通过jstack来查看各个线程的调用堆栈,就可以知道没有响应的线程到底在后台做什么事情,或者等待什么资源。

2、JConsole工具

Jconsole是JDK自带的监控工具,在JDK/bin目录下可以找到。它用于连接正在运行的本地或者远程的JVM,对运行在Java应用程序的资源消耗和性能进行监控,并画出大量的图表,提供强大的可视化界面。而且本身占用的服务器内存很小,甚至可以说几乎不消耗。

另参考死锁产生的原因和解锁的方法

12. 需求从提出到上线的过程,测试参与了什么

13. 讲讲testng

14. 性能测试和自动化测试?