建造者模式和装饰器模式
建造者模式
以盖房子为例 盖房项目需求
- 需要建房子:这一过程为打桩、砌墙、封顶
- 房子有各种各样的,比如普通房,高楼,别墅,各 种房子的过程虽然一样,但是要求不要相同的.
1.1 传统方式解决盖房需求
public abstract class AbstractHouse {
//打地基
public abstract void buildBasic();
//砌墙
public abstract void buildWalls();
//封顶
public abstract void roofed();
public void build() {
buildBasic();
buildWalls();
roofed();
}
}
public class CommonHouse extends AbstractHouse {
@Override
public void buildBasic() {
// TODO Auto-generated method stub
System.out.println(" 普通房子打地基 ");
}
@Override
public void buildWalls() {
// TODO Auto-generated method stub
System.out.println(" 普通房子砌墙 ");
}
@Override
public void roofed() {
// TODO Auto-generated method stub
System.out.println(" 普通房子封顶 ");
}
}
public class Client {
public static void main(String[] args) {
// TODO Auto-generated method stub
CommonHouse commonHouse = new CommonHouse();
commonHouse.build();
}
}
1.2 传统方式解决盖房需求问题分析
- 优点是比较好理解,简单易操作。
- 设计的程序结构,过于简单,没有设计缓存层对象,程序的扩展和维护不好. 也就是说,这种设计方案,把产品(即:房子) 和 创建产品的过程(即:建房子流程) 封装在一起,耦合性增强了。
- 解决方案:将产品和产品建造过程解耦 => 建造者模式.
1.3 建造者模式基本介绍
基本介绍
- 建造者模式(Builder Pattern) 又叫生成器模式,是一种对象构建模式。它可以将复杂对象的建造过程抽象出来(抽象类别),使这个抽象过程的不同实现方法可以构造出不同表现(属性)的对象。
- 建造者模式 是一步一步创建一个复杂的对象,它允许用户只通过指定复杂对象的类型和内容就可以构建它们,用户不需要知道内部的具体构建细节。
1.4 建造者模式的四个角色
Product(产品角色): 一个具体的产品对象。Builder(抽象建造者): 创建一个Product对象的各个部件指定的 接口/抽象类。ConcreteBuilder(具体建造者): 实现接口,构建和装配各个部件。Director(指挥者): 构建一个使用Builder接口的对象。它主要是用于创建一个复杂的对象。它主要有两个作用,一是:隔离了客户与对象的生产过程,二是:负责控制产品对象的生产过程。
1.5 建造者模式原理类图
1.6 建造者模式解决盖房需求
- 需要建房子:这一过程为打桩、砌墙、封顶。不管是普通房子也好,别墅也好都需要经历这些过程,下面我们使用建造者模式(Builder Pattern)来完成
- 思路分析图解(类图)
//产品->Product
public class House {
private String baise;
private String wall;
private String roofed;
public String getBaise() {
return baise;
}
public void setBaise(String baise) {
this.baise = baise;
}
public String getWall() {
return wall;
}
public void setWall(String wall) {
this.wall = wall;
}
public String getRoofed() {
return roofed;
}
public void setRoofed(String roofed) {
this.roofed = roofed;
}
}
// 抽象的建造者
public abstract class HouseBuilder {
protected House house = new House();
//将建造的流程写好, 抽象的方法
public abstract void buildBasic();
public abstract void buildWalls();
public abstract void roofed();
//建造房子好, 将产品(房子) 返回
public House buildHouse() {
return house;
}
}
public class CommonHouse extends HouseBuilder {
@Override
public void buildBasic() {
// TODO Auto-generated method stub
System.out.println(" 普通房子打地基5米 ");
}
@Override
public void buildWalls() {
// TODO Auto-generated method stub
System.out.println(" 普通房子砌墙10cm ");
}
@Override
public void roofed() {
// TODO Auto-generated method stub
System.out.println(" 普通房子屋顶 ");
}
}
public class HighBuilding extends HouseBuilder {
@Override
public void buildBasic() {
// TODO Auto-generated method stub
System.out.println(" 高楼的打地基100米 ");
}
@Override
public void buildWalls() {
// TODO Auto-generated method stub
System.out.println(" 高楼的砌墙20cm ");
}
@Override
public void roofed() {
// TODO Auto-generated method stub
System.out.println(" 高楼的透明屋顶 ");
}
}
//指挥者,这里去指定制作流程,返回产品
public class HouseDirector {
HouseBuilder houseBuilder = null;
//构造器传入 houseBuilder
public HouseDirector(HouseBuilder houseBuilder) {
this.houseBuilder = houseBuilder;
}
//通过setter 传入 houseBuilder
public void setHouseBuilder(HouseBuilder houseBuilder) {
this.houseBuilder = houseBuilder;
}
//如何处理建造房子的流程,交给指挥者
public House constructHouse() {
houseBuilder.buildBasic();
houseBuilder.buildWalls();
houseBuilder.roofed();
return houseBuilder.buildHouse();
}
}
public class Client {
public static void main(String[] args) {
//盖普通房子
CommonHouse commonHouse = new CommonHouse();
//准备创建房子的指挥者
HouseDirector houseDirector = new HouseDirector(commonHouse);
//完成盖房子,返回产品(普通房子)
House house = houseDirector.constructHouse();
//System.out.println("输出流程");
System.out.println("--------------------------");
//盖高楼
HighBuilding highBuilding = new HighBuilding();
//重置建造者
houseDirector.setHouseBuilder(highBuilding);
//完成盖房子,返回产品(高楼)
houseDirector.constructHouse();
}
}
1.7 建造者模式在JDK的应用和源码分析
- java.lang.StringBuilfer中的建造者
- 代码说明 + Debug 源码
源码中建造者模式角色分析
Appendable接口定义了多个append方法(抽象方法), 即Appendable为抽象建造者, 定义了抽象方法AbstractStringBuilder实现了Appendable接口方法,这里的AbstractStringBuilder已经是建造者,只是不能实例化StringBuilder即充当了指挥者角色,同时充当了具体的建造者,建造方法的实现是由AbstractStringBuilder完成, 而StringBuilder继承了AbstractStringBuilder
1.8 建造者模式的注意事项和细节
- 客户端(使用程序)不必知道产品内部组成的细节,将产品本身与产品的创建过程解耦,使得相同的创建过程可以创建不同的产品对象
- 每一个具体建造者都相对独立,而与其他的具体建造者无关,因此可以很方便地替换具体建造者或增加新的具体建造者, 用户使用不同的具体建造者即可得到不同的产品对象
- 可以更加精细地控制产品的创建过程 。将复杂产品的创建步骤分解在不同的方法中,使得创建过程更加清晰,也更方便使用程序来控制创建过程
- 增加新的具体建造者无须修改原有类库的代码,指挥者类针对抽象建造者类编程,系统扩展方便,符合 “开闭原则”
- 建造者模式所创建的产品一般具有较多的共同点,其组成部分相似,如果产品之间的差异性很大,则不适合使用建造者模式,因此其使用范围受到一定的限制。
- 如果产品的内部变化复杂,可能会导致需要定义很多具体建造者类来实现这种变化,导致系统变得很庞大,因此在这种情况下,要考虑是否选择建造者模式.
- 抽象工厂模式VS建造者模式 抽象工厂模式实现对产品家族的创建,一个产品家族是这样的一系列产品:具有不同分类维度的产品组合,采用抽象工厂模式不需要关心构建过程,只关心什么产品由什么工厂生产即可。而建造者模式则是要求按照指定的蓝图建造产品,它的主要目的是通过组装零配件而产生一个新产品。
适配器设计模式
2.1 实现生活中的适配器例子
现实生活中的适配器例子 有的国家插座用的是两孔的(欧标),可以买个多功能转换插头 (适配器) ,这样就可以使用了。
2.2 基本介绍
- 适配器模式(Adapter Pattern)将某个类的接口转换成客户端期望的另一个接口表示,主的目的是兼容性,让原本因接口不匹配不能一起工作的两个类可以协同 工作。其别名为包装器(Wrapper)
- 适配器模式属于结构型模式
- 主要分为三类:类适配器模式、对象适配器模式、接口适配器模式
2.3 工作原理
- 适配器模式:将一个类的接口转换成另一种接口.让原本接口不兼容的类可以兼容。
- 从用户的角度看不到被适配者,是解耦的。
- 用户调用适配器转化出来的目标接口方法,适配器再调用被适配者的相关接口方法。
- 用户收到反馈结果,感觉只是和目标接口交互,如图。
2.3 类适配器模式
基本介绍:Adapter类,通过继承 src类,实现 dst 类接口,完成src->dst的适配
应用实例:以生活中充电器的例子来讲解适配器,充电器本身相当Adapter,220V交流电相当于src (即被适配者),我们的目dst(即 目标)是5V直流电 思路分析(类图)
代码实现
//被适配的类
public class Voltage220V {
//输出220V的电压
public int output220V() {
int src = 220;
System.out.println("电压=" + src + "伏");
return src;
}
}
//适配接口
public interface IVoltage5V {
public int output5V();
}
//适配器类
public class VoltageAdapter extends Voltage220V implements IVoltage5V {
@Override
public int output5V() {
// TODO Auto-generated method stub
//获取到220V电压
int srcV = output220V();
int dstV = srcV / 44 ; //转成 5v
return dstV;
}
}
public class Phone {
//充电
public void charging(IVoltage5V iVoltage5V) {
if(iVoltage5V.output5V() == 5) {
System.out.println("电压为5V, 可以充电~~");
} else if (iVoltage5V.output5V() > 5) {
System.out.println("电压大于5V, 不能充电~~");
}
}
}
public class Client {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(" === 类适配器模式 ====");
Phone phone = new Phone();
phone.charging(new VoltageAdapter());
}
}
2.4 类适配器模式注意事项和细节
- Java是单继承机制,所以类适配器需要继承src类这一点算是一个缺点, 因为这要求dst必须是接口,有一定局限性;
- src类的方法在Adapter中都会暴露出来,也增加了使用的成本。
- 由于其继承了src类,所以它可以根据需求重写src类的方法,使得Adapter的灵活性增强了。
2.5 对象适配器模式
- 基本思路和类的适配器模式相同,只是将Adapter类作修改,不是继承src类,而是持有src类的实例,以解决兼容性的问题。 即:持有 src类,实现 dst 类接口,完成src->dst的适配
- 根据“合成复用原则”,在系统中尽量使用关联关系来替代继承关系。
- 对象适配器模式是适配器模式常用的一种 应用实例说明 以生活中充电器的例子来讲解适配器,充电器本身相当于Adapter,220V交流电相当于src (即被适配者),我们的目dst(即目标)是5V直流电,使用对象适配器模式完成。
//被适配的类
public class Voltage220V {
//输出220V的电压,不变
public int output220V() {
int src = 220;
System.out.println("电压=" + src + "伏");
return src;
}
}
package com.yxj.adapter.objectadapter;
//适配接口
public interface IVoltage5V {
public int output5V();
}
//适配器类
public class VoltageAdapter implements IVoltage5V {
private Voltage220V voltage220V; // 关联关系-聚合
//通过构造器,传入一个 Voltage220V 实例
public VoltageAdapter(Voltage220V voltage220v) {
this.voltage220V = voltage220v;
}
@Override
public int output5V() {
int dst = 0;
if(null != voltage220V) {
int src = voltage220V.output220V();//获取220V 电压
System.out.println("使用对象适配器,进行适配~~");
dst = src / 44;
System.out.println("适配完成,输出的电压为=" + dst);
}
return dst;
}
}
public class Phone {
//充电
public void charging(IVoltage5V iVoltage5V) {
if(iVoltage5V.output5V() == 5) {
System.out.println("电压为5V, 可以充电~~");
} else if (iVoltage5V.output5V() > 5) {
System.out.println("电压大于5V, 不能充电~~");
}
}
}
public class Client {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(" === 对象适配器模式 ====");
Phone phone = new Phone();
phone.charging(new VoltageAdapter(new Voltage220V()));
}
}
2.6 对象适配器模式对象适配器模式注意事项和细节
- 对象适配器和类适配器其实算是同一种思想,只不过实现方式不同。根据合成复用原则,使用组合替代继承, 所以它解决了类适配器必须继承src的局限性问题,也不再要求dst必须是接口。
- 使用成本更低,更灵活。
2.7 接口适配器模式
2.8 接口适配器模式介绍
- 一些书籍称为:适配器模式(Default Adapter Pattern)缺省适配器模式。\
- 当不需要全部实现接口提供的方法时,可先设计一个抽象类实现接口,并为该接口中每个方法提供一个默认实现(空方法),那么该抽象类的子类可有选择地覆盖父类的某些方法来实现需求.
- 适用于一个接口不想使用其所有的方法的情况。 应用实例
Android中的属性动画ValueAnimator类可以通过addListener(AnimatorListener listener)方法添加监听器, 那么常规写法如右:- 有时候我们不想实现
Animator.AnimatorListener接口的全部方法,我们只想监听onAnimationStart,我们会如下写
3) AnimatorListenerAdapter类,就是一个接口适配器,代码如右图:它空实现了
Animator.AnimatorListener类(src)的所有方法.
4) AnimatorListener是一个接口.
5) 程序里的匿名内部类就是Listener 具体实现类
6) 实例说明
public interface Interface4 {
public void m1();
public void m2();
public void m3();
public void m4();
}
//在AbsAdapter 我们将 Interface4 的方法进行默认实现
public abstract class AbsAdapter implements Interface4 {
//默认实现
public void m1() {
}
public void m2() {
}
public void m3() {
}
public void m4() {
}
}
public class Client {
public static void main(String[] args) {
AbsAdapter absAdapter = new AbsAdapter() {
//只需要去覆盖我们 需要使用 接口方法
@Override
public void m1() {
// TODO Auto-generated method stub
System.out.println("使用了m1的方法");
}
};
absAdapter.m1();
}
}
2.9 适配器模式在SpringMVC框架应用的源码分析
-
SpringMvc中的HandlerAdapter, 就使用了适配器模式
-
SpringMVC处理请求的流程回顾
-
使用HandlerAdapter 的原因分析:可以看到处理器的类型不同,有多重实现方式,那么调用方式就不是确定的,如果需要直接调用Controller方法,需要调用的时候就得不断是使用if else来进行判断是哪一种子类然后执行。那么如果后面要扩展Controller,就得修改原来的代码,这样违背了OCP原则。
-
代码分析+Debug源码
5) 动手写SpringMVC通过适配器设计模式获取到对应的Controller的源码
说明:Spring定义了一个适配接口,使得每一种Controller有一种对应的适配器实现类适配器代替controller执行相应的方法扩展Controller 时,只需要增加一个适配器类就完成了SpringMVC的扩展了,
这就是设计模式的力量
//多种Controller实现
public interface Controller {
}
class HttpController implements Controller {
public void doHttpHandler() {
System.out.println("http...");
}
}
class SimpleController implements Controller {
public void doSimplerHandler() {
System.out.println("simple...");
}
}
class AnnotationController implements Controller {
public void doAnnotationHandler() {
System.out.println("annotation...");
}
}
import java.util.ArrayList;
import java.util.List;
public class DispatchServlet {
public static List<HandlerAdapter> handlerAdapters = new ArrayList<HandlerAdapter>();
public DispatchServlet() {
handlerAdapters.add(new AnnotationHandlerAdapter());
handlerAdapters.add(new HttpHandlerAdapter());
handlerAdapters.add(new SimpleHandlerAdapter());
}
public void doDispatch() {
// 此处模拟SpringMVC从request取handler的对象,
// 适配器可以获取到希望的Controller
HttpController controller = new HttpController();
// AnnotationController controller = new AnnotationController();
//SimpleController controller = new SimpleController();
// 得到对应适配器
HandlerAdapter adapter = getHandler(controller);
// 通过适配器执行对应的controller对应方法
adapter.handle(controller);
}
public HandlerAdapter getHandler(Controller controller) {
//遍历:根据得到的controller(handler), 返回对应适配器
for (HandlerAdapter adapter : this.handlerAdapters) {
if (adapter.supports(controller)) {
return adapter;
}
}
return null;
}
public static void main(String[] args) {
new DispatchServlet().doDispatch(); // http...
}
}
///定义一个Adapter接口
public interface HandlerAdapter {
public boolean supports(Object handler);
public void handle(Object handler);
}
// 多种适配器类
class SimpleHandlerAdapter implements HandlerAdapter {
public void handle(Object handler) {
((SimpleController) handler).doSimplerHandler();
}
public boolean supports(Object handler) {
return (handler instanceof SimpleController);
}
}
class HttpHandlerAdapter implements HandlerAdapter {
public void handle(Object handler) {
((HttpController) handler).doHttpHandler();
}
public boolean supports(Object handler) {
return (handler instanceof HttpController);
}
}
class AnnotationHandlerAdapter implements HandlerAdapter {
public void handle(Object handler) {
((AnnotationController) handler).doAnnotationHandler();
}
public boolean supports(Object handler) {
return (handler instanceof AnnotationController);
}
}
适配器模式的注意事项和细节
- 三种命名方式,是根据 src是以怎样的形式给到Adapter(在Adapter里的形式)来命名的。
- 类适配器:以类给到,在Adapter里,就是将src当做类,继承
- 对象适配器:以对象给到,在Adapter里,将src作为一个对象,持有
- 接口适配器:以接口给到,在Adapter里,将src作为一个接口,实现
- Adapter模式最大的作用还是将原本不兼容的接口融合在一起工作。
- 实际开发中,实现起来不拘泥于我们讲解的三种经典形式