攻不下dfs不参加比赛(十八)

127 阅读3分钟

Offer 驾到,掘友接招!我正在参与2022春招打卡活动,点击查看活动详情

为什么练dfs

相信学过数据结构的朋友都知道dfs(深度优先搜索)是里面相当重要的一种搜索算法,可能直接说大家感受不到有条件的大家可以去看看一些算法比赛。这些比赛中每一届或多或少都会牵扯到dfs,可能提到dfs大家都知道但是我们为了避免眼高手低有的东西看着自己很明白就是写不出来。为了避免这种尴尬我们这几天乘着这个活动练练,好了我们话不多说开始肥学。

PS:这两天发现有的肥友不知道什么是DFS我还是简单说一下吧不然这题很难做下去。

深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次.

在这里插入图片描述

举例说明之:下图是一个无向图,如果我们从A点发起深度优先搜索(以下的访问次序并不是唯一的,第二个点既可以是B也可以是C,D),则我们可能得到如下的一个访问过程:A->B->E(没有路了!回溯到A)->C->F->H->G->D(没有路,最终回溯到A,A也没有未访问的相邻节点,本次搜索结束).简要说明深度优先搜索的特点:每次深度优先搜索的结果必然是图的一个连通分量.深度优先搜索可以从多点发起.如果将每个节点在深度优先搜索过程中的"结束时间"排序(具体做法是创建一个list,然后在每个节点的相邻节点都已被访问的情况下,将该节点加入list结尾,然后逆转整个链表),则我们可以得到所谓的"拓扑排序",即topological sort. [1]

题目

你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串。

空节点则用一对空括号 "()" 表示。而且你需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。

示例 1:

输入: 二叉树: [1,2,3,4]
       1
     /   \
    2     3
   /    
  4     

输出: "1(2(4))(3)"

解释: 原本将是“1(2(4)())(3())”,
在你省略所有不必要的空括号对之后,
它将是“1(2(4))(3)”。
示例 2:

输入: 二叉树: [1,2,3,null,4]
       1
     /   \
    2     3
     \  
      4 

输出: "1(2()(4))(3)"

解释: 和第一个示例相似,
除了我们不能省略第一个对括号来中断输入和输出之间的一对一映射关系。

思路:我们可以使用递归的方法得到二叉树的前序遍历。在递归时,根据题目描述,我们需要加上额外的括号,会有以下 4 种情况:

如果当前节点有两个孩子,那我们在递归时,需要在两个孩子的结果外都加上一层括号;

如果当前节点没有孩子,那我们不需要在节点后面加上任何括号; 如果当前节点只有左孩子,那我们在递归时,只需要在左孩子的结果外加上一层括号,而不需要给右孩子加上任何括号; 如果当前节点只有右孩子,那我们在递归时,需要先加上一层空的括号 () 表示左孩子为空,再对右孩子进行递归,并在结果外加上一层括号。

解一:dfs

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
   
   public String tree2str(TreeNode t) {
        if(t==null)
            return "";
        if(t.left==null && t.right==null)
            return t.val+"";
        if(t.right==null)
            return t.val+"("+tree2str(t.left)+")";
        return t.val+"("+tree2str(t.left)+")("+tree2str(t.right)+")";   
    }

}