选择排序
选择排序的思想是:双重循环遍历数组,每经过一轮比较,找到最小元素的下标,将其交换至首位。
JS
function select_sort(arr){
let minIndex;
for(let i=0;i<arr.length;i++){
minIndex=i;
for(let j=i+1;j<arr.length;j++){
if(arr[j]<arr[minIndex]){
minIndex=j;
}
}
swap(arr,i,minIndex);
}
}
function swap(arr,l,r){
let temp = arr[l];
arr[l]=arr[r];
arr[r]=temp;
}
选择排序就好比第一个数字站在擂台上,大吼一声:“还有谁比我小?”。剩余数字来挨个打擂,如果出现比第一个数字小的数,则新的擂主产生。每轮打擂结束都会找出一个最小的数,将其交换至首位。经过 n-1 轮打擂,所有的数字就按照从小到大排序完成了。
正是由于它比较容易理解,许多初学者在排序时非常喜欢使用选择排序法。
现在让我们思考一下,冒泡排序和选择排序有什么异同?
相同点:
都是两层循环,时间复杂度都为 O(n^2)O(n 2 ); 都只使用有限个变量,空间复杂度 O(1)O(1)。 不同点:
冒泡排序在比较过程中就不断交换;而选择排序增加了一个变量保存最小值 / 最大值的下标,遍历完成后才交换,减少了交换次数。 事实上,冒泡排序和选择排序还有一个非常重要的不同点,那就是:
冒泡排序法是稳定的,选择排序法是不稳定的。 想要理解这点不同,我们先要知道什么是排序算法的稳定性。
排序算法的稳定性 假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i] = r[j],且 r[i] 在 r[j] 之前,而在排序后的序列中,r[i] 仍在 r[j] 之前,则称这种排序算法是稳定的;否则称为不稳定的。
理解了稳定性的定义后,我们就能分析出:冒泡排序中,只有左边的数字大于右边的数字时才会发生交换,相等的数字之间不会发生交换,所以它是稳定的。
而选择排序中,最小值和首位交换的过程可能会破坏稳定性。比如数列:[2, 2, 1],在选择排序中第一次进行交换时,原数列中的两个 2 的相对顺序就被改变了,因此,我们说选择排序是不稳定的。
那么排序算法的稳定性有什么意义呢?其实它只在一种情况下有意义:当要排序的内容是一个对象的多个属性,且其原本的顺序存在意义时,如果我们需要在二次排序后保持原有排序的意义,就需要使用到稳定性的算法。
举个例子,如果我们要对一组商品排序,商品存在两个属性:价格和销量。当我们按照价格从高到低排序后,要再按照销量对其排序,这时,如果要保证销量相同的商品仍保持价格从高到低的顺序,就必须使用稳定性算法。
当然,算法的稳定性与具体的实现有关。在修改比较的条件后,稳定性排序算法可能会变成不稳定的。如冒泡算法中,如果将「左边的数大于右边的数,则交换」这个条件修改为「左边的数大于或等于右边的数,则交换」,冒泡算法就变得不稳定了。
同样地,不稳定排序算法也可以经过修改,达到稳定的效果。思考一下,选择排序算法如何实现稳定排序呢?
实现的方式有很多种,这里给出一种最简单的思路:新开一个数组,将每轮找出的最小值依次添加到新数组中,选择排序算法就变成稳定的了。
但如果将寻找最小值的比较条件由arr[minIndex] > arr[j]修改为arr[minIndex] >= arr[j],即使新开一个数组,选择排序算法依旧是不稳定的。所以分析算法的稳定性时,需要结合具体的实现逻辑才能得出结论,我们通常所说的算法稳定性是基于一般实现而言的。
二元选择排序 选择排序算法也是可以优化的,既然每轮遍历时找出了最小值,何不把最大值也顺便找出来呢?这就是二元选择排序的思想。
使用二元选择排序,每轮选择时记录最小值和最大值,可以把数组需要遍历的范围缩小一倍。
JS
function select_sort(arr){
let minindex,maxindex;
for(let i=0;i<arr.length/2;i++){
minindex=i,maxindex=i;
for(let j=i+1;j<arr.length-i;j++){
if(arr[j]<arr[minindex])
minindex=j;
if(arr[j]>arr[maxindex])
maxindex=j;
}
if(minindex == maxindex) break;
swap(arr,i,minindex)
if(maxindex == i) maxindex = minindex;
swap(arr,arr.length-i-1,maxindex)
}
return arr
}
function swap(arr,l,r){
let temp = arr[l];
arr[l]=arr[r];
arr[r]=temp;
}
我们使用 minIndex 记录最小值的下标,maxIndex 记录最大值的下标。每次遍历后,将最小值交换到首位,最大值交换到末尾,就完成了排序。
由于每一轮遍历可以排好两个数字,所以最外层的遍历只需遍历一半即可。
二元选择排序中有一句很重要的代码,它位于交换最小值和交换最大值的代码中间:
Js
if (maxIndex == i) maxIndex = minIndex;
这行代码的作用处理了一种特殊情况:如果最大值的下标等于 i,也就是说 arr[i] 就是最大值,由于 arr[i] 是当前遍历轮次的首位,它已经和 arr[minIndex] 交换了,所以最大值的下标需要跟踪到 arr[i] 最新的下标 minIndex。
时间复杂度 & 空间复杂度 前文已经说到,选择排序使用两层循环,时间复杂度为 O(n^2)O(n 2 ); 只使用有限个变量,空间复杂度 O(1)O(1)。二元选择排序虽然比选择排序要快,但治标不治本,二元选择排序中做的优化无法改变其时间复杂度,二元选择排序的时间复杂度仍然是 O(n^2)O(n 2 );只使用有限个变量,空间复杂度 O(1)O(1)。