Offer 驾到,掘友接招!我正在参与2022春招打卡活动,点击查看活动详情。
为什么练dfs
相信学过数据结构的朋友都知道dfs(深度优先搜索)是里面相当重要的一种搜索算法,可能直接说大家感受不到有条件的大家可以去看看一些算法比赛。这些比赛中每一届或多或少都会牵扯到dfs,可能提到dfs大家都知道但是我们为了避免眼高手低有的东西看着自己很明白就是写不出来。为了避免这种尴尬我们这几天乘着这个活动练练,好了我们话不多说开始肥学。
PS:这两天发现有的肥友不知道什么是DFS我还是简单说一下吧不然这题很难做下去。
深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次.
举例说明之:下图是一个无向图,如果我们从A点发起深度优先搜索(以下的访问次序并不是唯一的,第二个点既可以是B也可以是C,D),则我们可能得到如下的一个访问过程:A->B->E(没有路了!回溯到A)->C->F->H->G->D(没有路,最终回溯到A,A也没有未访问的相邻节点,本次搜索结束).简要说明深度优先搜索的特点:每次深度优先搜索的结果必然是图的一个连通分量.深度优先搜索可以从多点发起.如果将每个节点在深度优先搜索过程中的"结束时间"排序(具体做法是创建一个list,然后在每个节点的相邻节点都已被访问的情况下,将该节点加入list结尾,然后逆转整个链表),则我们可以得到所谓的"拓扑排序",即topological sort. [1]
题目
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
示例 1:
输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]
示例 2:
输入:root1 = [1], root2 = [1,2]
输出:[2,2]
思路:解法一其实我弄的太暴力了全都是if else 感觉把DFS给搞的不高大上了,不过也是有优点的就是看起来比较易懂哈哈哈。整体思路就是深度遍历把合并起来的二叉树直接作用到root1上面。然后就是一顿if else
解一:dfs
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode combine(TreeNode root1,TreeNode root2){
if(root2==null)return root1;
if(root1.left==null&&root2.left!=null){
TreeNode left=new TreeNode(root2.left.val);
root1.left=left;
}else if(root1.left!=null&&root2.left!=null){
root1.left.val=root1.left.val+root2.left.val;
}
if(root1.right==null&&root2.right!=null){
TreeNode right=new TreeNode(root2.right.val);
root1.right=right;
}else if(root1.right!=null&&root2.right!=null){
root1.right.val+=root2.right.val;
}
combine(root1.left,root2.left);
combine(root1.right,root2.right);
return root1;
}
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if(root1==null&&root2!=null){
return root2;
}else if(root1!=null&&root2==null){
return root1;
}else if(root1==null&&root2==null)return null;
root1.val+=root2.val;
return combine(root1,root2);
}
}
解法二:推荐
思路:可以使用深度优先搜索合并两个二叉树。从根节点开始同时遍历两个二叉树,并将对应的节点进行合并。
两个二叉树的对应节点可能存在以下三种情况,对于每种情况使用不同的合并方式。
如果两个二叉树的对应节点都为空,则合并后的二叉树的对应节点也为空;
如果两个二叉树的对应节点只有一个为空,则合并后的二叉树的对应节点为其中的非空节点;
如果两个二叉树的对应节点都不为空,则合并后的二叉树的对应节点的值为两个二叉树的对应节点的值之和,此时需要显性合并两个节点。
class Solution {
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
if (t1 == null) {
return t2;
}
if (t2 == null) {
return t1;
}
TreeNode merged = new TreeNode(t1.val + t2.val);
merged.left = mergeTrees(t1.left, t2.left);
merged.right = mergeTrees(t1.right, t2.right);
return merged;
}
}