Offer 驾到,掘友接招!我正在参与2022春招打卡活动,点击查看活动详情。
为什么练dfs
相信学过数据结构的朋友都知道dfs(深度优先搜索)是里面相当重要的一种搜索算法,可能直接说大家感受不到有条件的大家可以去看看一些算法比赛。这些比赛中每一届或多或少都会牵扯到dfs,可能提到dfs大家都知道但是我们为了避免眼高手低有的东西看着自己很明白就是写不出来。为了避免这种尴尬我们这几天乘着这个活动练练,好了我们话不多说开始肥学。
PS:这两天发现有的肥友不知道什么是DFS我还是简单说一下吧不然这题很难做下去。
深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次.
举例说明之:下图是一个无向图,如果我们从A点发起深度优先搜索(以下的访问次序并不是唯一的,第二个点既可以是B也可以是C,D),则我们可能得到如下的一个访问过程:A->B->E(没有路了!回溯到A)->C->F->H->G->D(没有路,最终回溯到A,A也没有未访问的相邻节点,本次搜索结束).简要说明深度优先搜索的特点:每次深度优先搜索的结果必然是图的一个连通分量.深度优先搜索可以从多点发起.如果将每个节点在深度优先搜索过程中的"结束时间"排序(具体做法是创建一个list,然后在每个节点的相邻节点都已被访问的情况下,将该节点加入list结尾,然后逆转整个链表),则我们可以得到所谓的"拓扑排序",即topological sort. [1]
题目
给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] = 1 表示陆地, grid[i][j] = 0 表示水域。
网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表示陆地的格子相连组成的岛屿)。
岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。网格为长方形,且宽度和高度均不超过 100 。计算这个岛屿的周长。
示例 1:
输入:grid = [[0,1,0,0],[1,1,1,0],[0,1,0,0],[1,1,0,0]]
输出:16
解释:它的周长是上面图片中的 16 个黄色的边
示例 2:
输入:grid = [[1]]
输出:4
示例 3:
输入:grid = [[1,0]]
输出:4
思路:这道题显然用迭代比较好,那为什么还要放在dfs里面呢?我是觉得让大家看看dfs是怎么在这种题里用的。
解一:dfs
public int islandPerimeter(int[][] grid) {
for (int r = 0; r < grid.length; r++) {
for (int c = 0; c < grid[0].length; c++) {
if (grid[r][c] == 1) {
// 题目限制只有一个岛屿,计算一个即可
return dfs(grid, r, c);
}
}
}
return 0;
}
int dfs(int[][] grid, int r, int c) {
if (!(0 <= r && r < grid.length && 0 <= c && c < grid[0].length)) {// 处理方格位于网格边缘的情况
return 1;
}
if (grid[r][c] == 0) {
return 1;
}
if (grid[r][c] != 1) {
return 0;
}
grid[r][c] = 2;
return dfs(grid, r - 1, c)/ 基本的 DFS 框架:每次搜索四个相邻方格
+ dfs(grid, r + 1, c)
+ dfs(grid, r, c - 1)
+ dfs(grid, r, c + 1);
}
解法二:迭代就比较简单了
思路:对于一个陆地格子的每条边,它被算作岛屿的周长当且仅当这条边为网格的边界或者相邻的另一个格子为水域。 因此,我们可以遍历每个陆地格子,看其四个方向是否为边界或者水域,如果是,将这条边的贡献(即 11)加入答案 \textit{ans}ans 中即可。
class Solution {
static int[] dx = {0, 1, 0, -1};//用来判断四周的(结果就是上下左右的判断)
static int[] dy = {1, 0, -1, 0};
public int islandPerimeter(int[][] grid) {
int n = grid.length, m = grid[0].length;
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if (grid[i][j] == 1) {
int cnt = 0;
for (int k = 0; k < 4; ++k) {
int tx = i + dx[k];
int ty = j + dy[k];
if (tx < 0 || tx >= n || ty < 0 || ty >= m || grid[tx][ty] == 0) {
cnt += 1;
}
}
ans += cnt;
}
}
}
return ans;
}
}