攻不下dfs不参加比赛(十二)

209 阅读5分钟

Offer 驾到,掘友接招!我正在参与2022春招打卡活动,点击查看活动详情

为什么练dfs

相信学过数据结构的朋友都知道dfs(深度优先搜索)是里面相当重要的一种搜索算法,可能直接说大家感受不到有条件的大家可以去看看一些算法比赛。这些比赛中每一届或多或少都会牵扯到dfs,可能提到dfs大家都知道但是我们为了避免眼高手低有的东西看着自己很明白就是写不出来。为了避免这种尴尬我们这几天乘着这个活动练练,好了我们话不多说开始肥学。

PS:这两天发现有的肥友不知道什么是DFS我还是简单说一下吧不然这题很难做下去。

深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次.

在这里插入图片描述

举例说明之:下图是一个无向图,如果我们从A点发起深度优先搜索(以下的访问次序并不是唯一的,第二个点既可以是B也可以是C,D),则我们可能得到如下的一个访问过程:A->B->E(没有路了!回溯到A)->C->F->H->G->D(没有路,最终回溯到A,A也没有未访问的相邻节点,本次搜索结束).简要说明深度优先搜索的特点:每次深度优先搜索的结果必然是图的一个连通分量.深度优先搜索可以从多点发起.如果将每个节点在深度优先搜索过程中的"结束时间"排序(具体做法是创建一个list,然后在每个节点的相邻节点都已被访问的情况下,将该节点加入list结尾,然后逆转整个链表),则我们可以得到所谓的"拓扑排序",即topological sort. [1]

题目

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

在这里插入图片描述

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点 2 和节点 8 的最近公共祖先是 6
示例 2:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

思路:我们从根节点开始遍历;

如果当前节点的值大于 pp 和 qq 的值,说明 pp 和 qq 应该在当前节点的左子树,因此将当前节点移动到它的左子节点;

如果当前节点的值小于 pp 和 qq 的值,说明 pp 和 qq 应该在当前节点的右子树,因此将当前节点移动到它的右子节点;

如果当前节点的值不满足上述两条要求,那么说明当前节点就是「分岔点」。此时,pp 和 qq 要么在当前节点的不同的子树中,要么其中一个就是当前节点。

解:自上而下解法(稍快)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */

class Solution {
    TreeNode root1=new TreeNode();
    
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(p.val<root.val&&q.val<root.val){
            root1=lowestCommonAncestor(root.left,p,q);
        }
        else if(p.val>root.val&&q.val>root.val){
           root1=lowestCommonAncestor(root.right,p,q);
        }else{
            return root;
        }
        return root1;
    }
}

解法二:非递归算法


class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        TreeNode ancestor = root;
        while (true) {
            if (p.val < ancestor.val && q.val < ancestor.val) {
                ancestor = ancestor.left;
            } else if (p.val > ancestor.val && q.val > ancestor.val) {
                ancestor = ancestor.right;
            } else {
                break;
            }
        }
        return ancestor;
    }
}

总结

可以观察到有时候可以把递归看成一种循环,只不过这时候有些东西和以往不同了。这时的递归就和循环一样要维护一个变量,这个变量的加入给递归生成了一个专有名词叫回溯。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。八皇后问题就是回溯算法的典型,第一步按照顺序放一个皇后,然后第二步符合要求放第2个皇后,如果没有位置符合要求,那么就要改变第一个皇后的位置,重新放第2个皇后的位置,直到找到符合条件的位置就可以了。回溯在迷宫搜索中使用很常见,就是这条路走不通,然后返回前一个路口,继续下一条路。回溯算法说白了就是穷举法。不过回溯算法使用剪枝函数,剪去一些不可能到达 最终状态(即答案状态)的节点,从而减少状态空间树节点的生成。回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。