14 | count(* )竟然这么慢?
在开发系统的时候,你可能经常需要计算一个表的行数。一条select count(* ) fromt 语句不就解决了吗?
但是随着系统中记录数越来越多,这条语句执行会越来越慢。那么今天,我们就来看看count(* )语句到底是怎样实现的,以及MySQL为什么会这么实现。然后如果应用中有这种频繁变更并需要统计表行数的需求,业务设计上可以怎么做。
count(* )的实现方式你首先要明确的是,在不同的MySQL引擎中,count(* )有不同的实现方式。
- MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count(* )的时候会直接返回这个数,效率很高;
- 而InnoDB引擎就麻烦了,它执行count(* )的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。 这里需要注意的是,我们在这篇文章里讨论的是没有过滤条件的count(* ),如果加了where条件的话,MyISAM表也是不能返回得这么快的。
在前面的文章中,我们一起分析了为什么要使用InnoDB,因为不论是在事务支持、并发能力还是在数据安全方面,InnoDB都优于MyISAM。
这就是当你的记录数越来越多的时候,计算一个表的总行数会越来越慢的原因。那为什么InnoDB不跟MyISAM一样,也把数字存起来呢?这是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB表“应该返回多少行”也是不确定的。这里用一个算count(* )的例子来为你解释一下。
假设表t中现在有10000条记录,我们设计了三个用户并行的会话。 会话A先启动事务并查询一次表的总行数; 会话B启动事务,插入一行后记录后,查询表的总行数; 会话C先启动一个单独的语句,插入一行记录后,查询表的总行数。 我们假设从上到下是按照时间顺序执行的,同一行语句是在同一时刻执行的。
你会看到,在最后一个时刻,三个会话A、B、C会同时查询表t的总行数,但拿到的结果却不同。这和InnoDB的事务设计有关系,可重复读是它默认的隔离级别,在代码上就是通过多版本并发控制,也就是MVCC(同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制。)来实现的。每一行记录都要判断自己是否对这个会话可见,因此对于count(* )请求来说,InnoDB只好把数据一行一行地读出依次判断,可见的行才能够用于计算“基于这个查询”的表的总行数。当然,现在这个看上去笨笨的MySQL,在执行count(* )操作的时候还是做了优化的。
InnoDB是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。
对于count(* )这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。
小结一下: MyISAM表虽然count(* )很快,但是不支持事务; showtable status命令虽然返回很快,但是不准确; InnoDB表直接count(* )会遍历全表,虽然结果准确,但会导致性能问题。
如果现在有一个页面经常要显示交易系统的操作记录总数,应该怎么办呢?答案是只能自己计数。接下来看看计数的方法。
用缓存系统保存计数
对于更新很频繁的库来说,你可能会第一时间想到,用缓存系统来支持。 你可以用一个Redis服务来保存这个表的总行数。这个表每被插入一行Redis计数就加1,每被删除一行Redis计数就减1。这种方式下,读和更新操作都很快,但你再想一下这种方式存在什么问题吗?
没错,缓存系统可能会丢失更新。
Redis的数据不能永久地留在内存里,所以你会找一个地方把这个值定期地持久化存储起来。但即使这样,仍然可能丢失更新。试想如果刚刚在数据表中插入了一行,Redis中保存的值也加了1,然后Redis异常重启,重启后你要从存储redis数据的地方把这个值读回来,而刚刚加1的这个计数操作却丢失了。
当然这还是有解的。比如Redis异常重启以后,到数据库里面单独执行一次count(* )获取真实的行数,再把这个值写回到Redis里就可以了。异常重启毕竟不是经常出现的情况,这一次全表扫描的成本,还是可以接受的。
但实际上,将计数保存在缓存系统中的方式,还不只是丢失更新的问题。即使Redis正常工作,这个值还是逻辑上不精确的。
你可以设想一下有这么一个页面,要显示操作记录的总数,同时还要显示最近操作的100条记录。那么,这个页面的逻辑就需要先到Redis里面取出计数,再到数据表里面取数据记录。
我们是这么定义不精确的:
- 一种是,查到的100行结果里面有最新插入记录,而Redis的计数里还没加1;
- 另一种是,查到的100行结果里没有最新插入的记录,而Redis的计数里已经加了1。 这两种情况,都是逻辑不一致的。 我们一起来看看这个时序图。
图中会话A是一个插入交易记录的逻辑,往数据表里插入一行R,然后Redis计数加1;会话B就是查询页面显示时需要的数据。
在这个时序里,在T3时刻会话B来查询的时候,会显示出新插入的R这个记录,但是Redis的计数还没加1。这时候,就会出现我们说的数据不一致。
你一定会说,这是因为我们执行新增记录逻辑时候,是先写数据表,再改Redis计数。而读的时候是先读Redis,再读数据表,这个顺序是相反的。那么,如果保持顺序一样的话,是不是就没问题了?我们现在把会话A的更新顺序换一下,再看看执行结果。
你会发现,这时候反过来了,会话B在T3时刻查询的时候,Redis计数加了1了,但还查不到新插入的R这一行,也是数据不一致的情况。
在并发系统里面,我们是无法精确控制不同线程的执行时刻的,因为存在图中的这种操作序列,所以,我们说即使Redis正常工作,这个计数值还是逻辑上不精确的。
在数据库保存计数
根据上面的分析,用缓存系统保存计数有丢失数据和计数不精确的问题。那么,如果我们把这个计数直接放到数据库里单独的一张计数表C,又会怎么样呢?
首先,这解决了崩溃丢失的问题,InnoDB是支持崩溃恢复不丢数据的。
然后,我们再看看能不能解决计数不精确的问题。你会说,这不一样吗?无非就是把图中对Redis的操作,改成了对计数表C的操作。
这是可以解决的。我们这篇文章要解决的问题,都是由于InnoDB要支持事务,从而导致InnoDB表不能把count(* )直接存起来,然后查询的时候直接返回形成的。所谓以子之矛攻子之盾,现在我们就利用“事务”这个特性,把问题解决掉。
我们来看下现在的执行结果。虽然会话B的读操作仍然是在T3执行的,但是因为这时候更新事务还没有提交,所以计数值加1这个操作对会话B还不可见。因此,会话B看到的结果里, 查计数值和“最近100条记录”看到的结果,逻辑上就是一致的。
不同的count用法
在select count(?) fromt这样的查询语句里面,count(* )、count(主键id)、count(字段)和count(1)等不同用法的性能,有哪些差别。下面的讨论还是基于InnoDB引擎的。
这里,首先你要弄清楚count()的语义。count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count函数的参数不是NULL,累计值就加1,否则不加。最后返回累计值。
所以,count(* )、count(主键id)和count(1) 都表示返回满足条件的结果集的总行数;而count(字段),则表示返回满足条件的数据行里面,参数“字段”不为NULL的总个数。
至于分析性能差别的时候,你可以记住这么几个原则:
- server层要什么就给什么;
- InnoDB只给必要的值;
- 现在的优化器只优化了count(* )的语义为“取行数”,其他“显而易见”的优化并没有做。
- 对于count(主键id)来说,InnoDB引擎会遍历整张表,把每一行的id值都取出来,返回给server层。server层拿到id后,判断是不可能为空的,就按行累加。
- 对于count(1)来说,InnoDB引擎遍历整张表,但不取值。server层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。 单看这两个用法的差别的话,你能对比出来,count(1)执行得要比count(主键id)快。因为从引擎返回id会涉及到解析数据行,以及拷贝字段值的操作。
- 对于count(字段)来说:
- 如果这个“字段”是定义为not null的话,一行行地从记录里面读出这个字段,判断不能为null,按行累加;
- 如果这个“字段”定义允许为null,那么执行的时候,判断到有可能是null,还要把值取出来再判断一下,不是null才累加。也就是前面的第一条原则,server层要什么字段,InnoDB就返回什么字段。
- count(*)是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(* )肯定不是null,按行累加。
优化器就不能自己判断一下吗,主键id肯定非空啊,为什么不能按照count(* )来处理?
这种需要专门优化的情况太多了,而且MySQL已经优化过count(* )了,你直接使用这种用法就可以了。所以结论是:按照效率排序的话,count(字段)<count(主键id)<count(1)≈count(* ),建议尽量使用count(* )。