JUC学习笔记 - 07线程池

285 阅读10分钟

写在前面: 本文从线程池最基本的概念和使用方法说起,然后着手线程池源码进行详细解析。

初识线程池

首先了解一下ExecutorExecutorServiceThreadPoolExecutor,他们三者关系如下:

ThreadPoolExecutor继承关系.jpg

Executor

Executor提供了void execute(Runnable command)接口用于执行一个任务。

ExecutorService

ExecutorServiceExecutor继承,相较Executor还完善了整个任务执行器的一个生命周期,例如:

    void shutdown();                                          // 结束
    List<Runnable> shutdownNow();                             // 马上结束
    boolean isShutdown();                                     // 是否结束了
    boolean isTerminated();                                   // 是不是整体都执行完了
    boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException;                      // 等着结束,等多长时间,时间到了还不结束的话他就返回false

除了以上方法之外还可以通过submit方法提交任务。不同于Executorexecute是直接运行,submit是将任务扔给线程池,什么时候运行由线程池决定,整个过程是异步的。如果想要知道运行结果,就需要了解一下FutureCallable接口。

  • Callable提供了V call()方法,不同于Runnable没有返回值的void run方法,call方法是有返回值的。它可以在任务有返回结果后将结果存储起来。
  • Future会把Callable执行完后的结果装起来,表示未来有可能执行完的结果。

举个例子方便理解:

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Callable<String> c = new Callable() {
            @Override
            public String call() {
                return "Hello Callable";
            }
        };
        ExecutorService service = Executors.newCachedThreadPool();
        Future<String> future = service.submit(c);
        System.out.println(future.get());
        service.shutdown();
    }

我们实现了Callable接口,拿到Future对象后可以继续执行业务代码,等需要拿结果的时候再调用future.get(),阻塞地获取结果。

Callable只能是一个任务,不能作为Future获取结果。FutureTask更加灵活,其由于实现了RunnableFuture,而RunnableFuture实现了RunableFuture,所以FutureTask即是任务又是Future。后续会介绍到的ForkJoinPool都会用到此类。FutureTask的使用方法举例如下:

    public static void main(String[] args) throws InterruptedException, ExecutionException {
    FutureTask<Integer> task = new FutureTask<>(
            new Callable<Integer>() {
                @Override
                public Integer call() throws Exception {
                    TimeUnit.MILLISECONDS.sleep(500);
                    return 1000;
                }
            }
    );
    new Thread(task).start();
    System.out.println(task.get());
}
  • CompletableFuture底层使用的是ForkJoinPool,这个线程池后面会介绍。CompletableFuture用法灵活,可管理多个Future结果。使用案例:
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        long start, end;

        // sync
        start = System.currentTimeMillis();

        priceOfTM();
        priceOfTB();
        priceOfJD();

        end = System.currentTimeMillis();
        System.out.println("use serial methods call! " + (end - start));

        // async
        start = System.currentTimeMillis();

        CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(() -> priceOfTM());
        CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(() -> priceOfTB());
        CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(() -> priceOfJD());

        CompletableFuture.allOf(futureTM, futureTB, futureJD).join();

        end = System.currentTimeMillis();
        System.out.println("use completable future! " + (end - start));

        Thread.sleep(Integer.MAX_VALUE);
    }

    private static double priceOfTM() {
        delay();
        return 1.00;
    }

    private static double priceOfTB() {
        delay();
        return 2.00;
    }

    private static double priceOfJD() {
        delay();
        return 3.00;
    }

    private static void delay() {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
//        System.out.println("After 1000 ms sleep!");
    }

ThreadPoolExecutor

ThreadPoolExecutor是线程池的执行器,即可以向这个池子里扔任务,让这个线程池去执行。首先了解一下构造函数的几个参数:

  • corePoolSize即核心线程数,即使超过了生存时间任然会占用不会释放;
  • maximumPoolSize即最大线程数,当核心线程数不够了,能扩展到最大的线程数。超过生存时间后maximumPoolSize - corePoolSize的线程会被回收;
  • keepAliveTime即生存时间,核心线程以外的线程长时间没活干了就释放;
  • unit即生存时间的单位;
  • workQueue任务队列,即上篇文章所列举的BlockingQueue,用于排队等待核心线程。如果队列满了就根据maximumPoolSize创建新线程;
  • threadFactory即线程工厂,需要实现ThreadFactory接口,即创建线程;
  • handler即拒绝策略。当任务队列满了,且线程池无法处理新的线程,就需要执行各种各样的拒绝策略。jdk默认提供了四种策略:Abort抛异常;Discard丢弃任务不抛异常;DiscardOldest丢弃排队最久的任务;CallerRuns不丢弃不抛异常,回退给调用者处理服务。

举个容易理解的例子:

    // 首先来了两个任务,corePool起两个线程开始执行
    // 再来4个任务,放进queue攒着
    // 再来2个任务,起新的线程开始执行
    // 再来其他任务,执行拒绝策略
    ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,
            60, TimeUnit.SECONDS,
            new ArrayBlockingQueue<>(4),
            Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.CallerRunsPolicy());

jdk提供了四种默认线程池,接下来会分别介绍四种默认的线程池。需要注意的是在生产环境一般都需要自己按实际需求来设置参数,且拒绝策略也需要按需自定义。

ThreadPoolExecutor的几个默认线程池

SingleThreadPool

每次只执行一个线程任务,且顺序执行。

    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

有且只有一个线程存活,等待队列为LinkedBlockingQueue,等待的任务最多为Integer.MAX_VALUE个。

CachedPool

来一个任务就立即执行,一旦线程没活干了等60秒就回收。

    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

FixedThreadPool

创建该线程池需要指定线程数,表示最多只能这么多线程同时运行,且这些线程都不会被回收。此处提醒各位,LinkedBlockingQueue是不推荐使用,因为有可能出现队列还没慢内存已经满了的情况。

    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

此处分享《Java编程实战》中关于如何设置线程池大小的一段文字:

Java并发编程实战.jpg

线程数量不宜过多,否则会浪费资源在上下文的切换上。线程数量过少,处理器可能无法充分利用。此处仅对CPU密集型的计算做出以下建议:线程池大小 = CPU核数 * CPU期望利用率 * (1 + 等待时间 / 计算时间)

ScheduledPool

ScheduledExecutorService继承了ThreadPoolExecutor,传参如下:

    public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE,
              DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
              new DelayedWorkQueue());
    }

该线程池需要传入核心线程数,仅仅表示这些线程不需要被回收。线程池用的是DelayedWorkQueue,即线程池中的任务会根据延迟时间顺序执行任务。该线程池可用于任务调度等场景。

拒绝策略

自定义一个拒绝策略的例子,代码演示如下:

    public static void main(String[] args) {
        ExecutorService service = new ThreadPoolExecutor(
                1, // corePoolSize
                1, // maximumPoolSize
                0, // keepAliveTime
                TimeUnit.SECONDS,
                new SynchronousQueue<>(),
                Executors.defaultThreadFactory(),
                new MyHandler());
        for (int i = 0; i < 3; i++) {
            service.submit(() -> {
                try {
                    Thread.sleep(10000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            });
        }
    }

    static class MyHandler implements RejectedExecutionHandler {
        @Override
        public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
            System.out.println("trigger rejected policy");
        }
    }

ThreadPoolExecutor源码解析

常用变量解释

// int有32位,高3位表示线程池状态,低29位表示worker数量,即线程池里有多少线程
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// Integer.SIZE为32,所以COUNT_BITS为29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// runState is stored in the high-order bits
// 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING    = -1 << COUNT_BITS; // 正常运行
private static final int SHUTDOWN   =  0 << COUNT_BITS; // 调用了shutdown方法了进入了SHUTDOWN状态
private static final int STOP       =  1 << COUNT_BITS; // 调用了shutdownnow马上停止
private static final int TIDYING    =  2 << COUNT_BITS; // 调用了shutdown然后这个线程也执行完了,现在正在整理的这个过程叫TIDYING
private static final int TERMINATED =  3 << COUNT_BITS; // 整个线程全部结束

// Packing and unpacking ctl
// 获取线程池状态,通过按位与操作,低29位将全部变成0
private static int runStateOf(int c)     { return c & ~CAPACITY; }
// 获取线程池worker数量,通过按位与操作,高3位将全部变成0
private static int workerCountOf(int c)  { return c & CAPACITY; }
// 根据线程池状态和线程池worker数量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }

/*
 * Bit field accessors that don't require unpacking ctl.
 * These depend on the bit layout and on workerCount being never negative.
 */
// 线程池状态小于xx
private static boolean runStateLessThan(int c, int s) {
    return c < s;
}
// 线程池状态大于等于xx
private static boolean runStateAtLeast(int c, int s) {
    return c >= s;
}

构造方法

参数上面已经介绍过了,不再赘述。

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    // 基本类型参数校验
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    // 空指针校验
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    // 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime中
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}

提交执行任务的过程

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     */
    int c = ctl.get();
    // worker数量比核心线程数小,直接创建worker执行任务
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    // worker数量超过核心线程数,任务直接进入队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。
        // 这里需要recheck,任务入队列前后线程池的状态可能会发生变化。
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 这里需要判断0值,主要是在线程池构造方法中,核心线程数允许为0
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    // 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。
    // 这里有3点需要注意:
    // 1. 线程池不是运行状态时,addWorker内部会判断线程池状态
    // 2. addWorker第2个参数表示是否创建核心线程
    // 3. addWorker返回false,则说明任务执行失败,需要执行reject操作
    else if (!addWorker(command, false))
        reject(command);
}

创建Worker

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    // 外层自旋
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // 这个条件写得比较难懂,调整至如下等价条件:
        // (rs > SHUTDOWN) || 
        // (rs == SHUTDOWN && firstTask != null) || 
        // (rs == SHUTDOWN && workQueue.isEmpty())
        // 1. 线程池状态大于SHUTDOWN时,直接返回false
        // 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false
        // 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false
        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        // 内层自旋
        for (;;) {
            int wc = workerCountOf(c);
            // worker数量超过容量,直接返回false
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 使用CAS的方式增加worker数量。
            // 若增加成功,则直接跳出外层循环进入到第二部分
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            // 线程池状态发生变化,对外层循环进行自旋
            if (runStateOf(c) != rs)
                continue retry;
            // 其他情况,直接内层循环进行自旋即可
            // else CAS failed due to workerCount change; retry inner loop
        } 
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            // worker的添加必须是串行的,因此需要加锁
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                // 这儿需要重新检查线程池状态
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    // worker已经调用过了start()方法,则不再创建worker
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // worker创建并添加到workers成功
                    workers.add(w);
                    // 更新`largestPoolSize`变量
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            // 启动worker线程
            if (workerAdded) {
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        // worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

将线程添加到容器时肯定要做到同步,为了追求效率,此处没有使用synchronized而是使用了自旋。开始的两层自旋就是添加Worker,即在ctl的29位中加1。首先获取状态值,判断了一圈不符合则返回添加失败。然后先计算当前Worker数量是不是超过容量,超过则返回添加失败,否则用CAS的方式加。接着第二步串行地向workers中添加线程。

线程池Worker任务单元

Worker是一个Runnable,且封装了一个线程,在run方法中运行线程。核心就是用线程工厂创建了一个线程。

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;

    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;

    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        // 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker
        this.thread = getThreadFactory().newThread(this);
    }

    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }

    // 省略代码...
}

线程执行逻辑runworker

上面提到的Worker不仅可以放在线程中执行,同时继承了AbstractQueuedSynchronizer,本身也是一把锁,可以用来做同步任务。

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    // 调用unlock()是为了让外部可以中断
    w.unlock(); // allow interrupts
    // 这个变量用于判断是否进入过自旋(while循环)
    boolean completedAbruptly = true;
    try {
        // 这儿是自旋
        // 1. 如果firstTask不为null,则执行firstTask;
        // 2. 如果firstTask为null,则调用getTask()从队列获取任务。
        // 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待
        while (task != null || (task = getTask()) != null) {
            // 这儿对worker进行加锁,是为了达到下面的目的
            // 1. 降低锁范围,提升性能
            // 2. 保证每个worker执行的任务是串行的
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            // 如果线程池正在停止,则对当前线程进行中断操作
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            // 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。
            // 这两个方法在当前类里面为空实现。
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                // 帮助gc
                task = null;
                // 已完成任务数加一 
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 自旋操作被退出,说明线程池正在结束
        processWorkerExit(w, completedAbruptly);
    }
}

ForkJoinPool

WorkStealingPool

WorkStealingPool中每个线程都有自己单独的队列,任务往线程池丢的时候会在每个线程的队列上不断累计。某个线程执行完自己的任务队列之后就会去另外一个线程上面偷,避免其他线程没活干,只能盯着另一个线程忙到头也忙不完。

    public static ExecutorService newWorkStealingPool() {
        return new ForkJoinPool
            (Runtime.getRuntime().availableProcessors(),
             ForkJoinPool.defaultForkJoinWorkerThreadFactory,
             null, true);
    }

实际上WorkStealingPool用的是ForkJoinPool,所以本质上他是一个ForkJoinPool

ForkJoinPool

ForkJoinPool适合把大任务切分成一个个的小任务去运行,每个小任务还可以继续切分。切分后的任务执行完后要进行一个汇总,汇总就是子任务汇总到父任务的过程。任务的切分和汇总都是递归的过程。

以计算1000000个随机数的和为例:

public class TestForkJoinPool {
    static int[] nums = new int[1000000];
    static final int MAX_NUM = 50000;
    static Random r = new Random();

    static {
        for (int i = 0; i < nums.length; i++) {
            nums[i] = r.nextInt(100);
        }
        System.out.println("正确的结果:" + Arrays.stream(nums).sum());
    }

    // 没有返回值
    static class AddTask extends RecursiveAction {
        int start, end;

        AddTask(int s, int e) {
            start = s;
            end = e;
        }

        @Override
        protected void compute() {
            if (end - start <= MAX_NUM) {
                long sum = 0L;
                for (int i = start; i < end; i++) {
                    sum += nums[i];
                }
                System.out.println("from:" + start + " to:" + end + " = " + sum);
            } else {
                int middle = start + (end - start) / 2;
                AddTask subTask1 = new AddTask(start, middle);
                AddTask subTask2 = new AddTask(middle, end);
                subTask1.fork();
                subTask2.fork();
            }
        }
    }

    // 有返回值
    static class AddTaskRet extends RecursiveTask<Long> {

        private static final long serialVersionUID = 1L;
        int start, end;

        AddTaskRet(int s, int e) {
            start = s;
            end = e;
        }

        @Override
        protected Long compute() {
            if (end - start <= MAX_NUM) {
                long sum = 0L;
                for (int i = start; i < end; i++) {
                    sum += nums[i];
                }
                return sum;
            }
            int middle = start + (end - start) / 2;
            AddTaskRet subTask1 = new AddTaskRet(start, middle);
            AddTaskRet subTask2 = new AddTaskRet(middle, end);
            subTask1.fork();
            subTask2.fork();

            return subTask1.join() + subTask2.join();
        }
    }

    public static void main(String[] args) {
        ForkJoinPool fjp1 = new ForkJoinPool();
        AddTask task1 = new AddTask(0, nums.length);
        fjp1.execute(task1);
        task1.join();

        ForkJoinPool fjp2 = new ForkJoinPool();
        AddTaskRet task2 = new AddTaskRet(0, nums.length);
        fjp2.execute(task2);
        long result = task2.join();
        System.out.println(result);

        try {
            Thread.sleep(Integer.MAX_VALUE);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

首先要判断需求是否可以被拆分,然后再看ForkJoinPool的使用。使用时需要定义其为ForkJoinTask,实际的使用用的是他的子类RecursiveActionRecursiveTask,均需要重写compute方法。不同的是RecursiveAction.compute不带返回值,RecursiveTask.compute有返回值。上面代码分别用两种方式实现了需求。

parallelStream

// todo 源码解析