写在前面: 本文从线程池最基本的概念和使用方法说起,然后着手线程池源码进行详细解析。
初识线程池
首先了解一下Executor、ExecutorService和ThreadPoolExecutor,他们三者关系如下:
Executor
Executor提供了void execute(Runnable command)接口用于执行一个任务。
ExecutorService
ExecutorService从Executor继承,相较Executor还完善了整个任务执行器的一个生命周期,例如:
void shutdown(); // 结束
List<Runnable> shutdownNow(); // 马上结束
boolean isShutdown(); // 是否结束了
boolean isTerminated(); // 是不是整体都执行完了
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException; // 等着结束,等多长时间,时间到了还不结束的话他就返回false
除了以上方法之外还可以通过submit方法提交任务。不同于Executor的execute是直接运行,submit是将任务扔给线程池,什么时候运行由线程池决定,整个过程是异步的。如果想要知道运行结果,就需要了解一下Future和Callable接口。
Callable提供了V call()方法,不同于Runnable没有返回值的void run方法,call方法是有返回值的。它可以在任务有返回结果后将结果存储起来。Future会把Callable执行完后的结果装起来,表示未来有可能执行完的结果。
举个例子方便理解:
public static void main(String[] args) throws ExecutionException, InterruptedException {
Callable<String> c = new Callable() {
@Override
public String call() {
return "Hello Callable";
}
};
ExecutorService service = Executors.newCachedThreadPool();
Future<String> future = service.submit(c);
System.out.println(future.get());
service.shutdown();
}
我们实现了Callable接口,拿到Future对象后可以继续执行业务代码,等需要拿结果的时候再调用future.get(),阻塞地获取结果。
Callable只能是一个任务,不能作为Future获取结果。FutureTask更加灵活,其由于实现了RunnableFuture,而RunnableFuture实现了Runable和Future,所以FutureTask即是任务又是Future。后续会介绍到的ForkJoinPool都会用到此类。FutureTask的使用方法举例如下:
public static void main(String[] args) throws InterruptedException, ExecutionException {
FutureTask<Integer> task = new FutureTask<>(
new Callable<Integer>() {
@Override
public Integer call() throws Exception {
TimeUnit.MILLISECONDS.sleep(500);
return 1000;
}
}
);
new Thread(task).start();
System.out.println(task.get());
}
CompletableFuture底层使用的是ForkJoinPool,这个线程池后面会介绍。CompletableFuture用法灵活,可管理多个Future结果。使用案例:
public static void main(String[] args) throws ExecutionException, InterruptedException {
long start, end;
// sync
start = System.currentTimeMillis();
priceOfTM();
priceOfTB();
priceOfJD();
end = System.currentTimeMillis();
System.out.println("use serial methods call! " + (end - start));
// async
start = System.currentTimeMillis();
CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(() -> priceOfTM());
CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(() -> priceOfTB());
CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(() -> priceOfJD());
CompletableFuture.allOf(futureTM, futureTB, futureJD).join();
end = System.currentTimeMillis();
System.out.println("use completable future! " + (end - start));
Thread.sleep(Integer.MAX_VALUE);
}
private static double priceOfTM() {
delay();
return 1.00;
}
private static double priceOfTB() {
delay();
return 2.00;
}
private static double priceOfJD() {
delay();
return 3.00;
}
private static void delay() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// System.out.println("After 1000 ms sleep!");
}
ThreadPoolExecutor
ThreadPoolExecutor是线程池的执行器,即可以向这个池子里扔任务,让这个线程池去执行。首先了解一下构造函数的几个参数:
corePoolSize即核心线程数,即使超过了生存时间任然会占用不会释放;maximumPoolSize即最大线程数,当核心线程数不够了,能扩展到最大的线程数。超过生存时间后maximumPoolSize - corePoolSize的线程会被回收;keepAliveTime即生存时间,核心线程以外的线程长时间没活干了就释放;unit即生存时间的单位;workQueue任务队列,即上篇文章所列举的BlockingQueue,用于排队等待核心线程。如果队列满了就根据maximumPoolSize创建新线程;threadFactory即线程工厂,需要实现ThreadFactory接口,即创建线程;handler即拒绝策略。当任务队列满了,且线程池无法处理新的线程,就需要执行各种各样的拒绝策略。jdk默认提供了四种策略:Abort抛异常;Discard丢弃任务不抛异常;DiscardOldest丢弃排队最久的任务;CallerRuns不丢弃不抛异常,回退给调用者处理服务。
举个容易理解的例子:
// 首先来了两个任务,corePool起两个线程开始执行
// 再来4个任务,放进queue攒着
// 再来2个任务,起新的线程开始执行
// 再来其他任务,执行拒绝策略
ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,
60, TimeUnit.SECONDS,
new ArrayBlockingQueue<>(4),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.CallerRunsPolicy());
jdk提供了四种默认线程池,接下来会分别介绍四种默认的线程池。需要注意的是在生产环境一般都需要自己按实际需求来设置参数,且拒绝策略也需要按需自定义。
ThreadPoolExecutor的几个默认线程池
SingleThreadPool
每次只执行一个线程任务,且顺序执行。
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
有且只有一个线程存活,等待队列为LinkedBlockingQueue,等待的任务最多为Integer.MAX_VALUE个。
CachedPool
来一个任务就立即执行,一旦线程没活干了等60秒就回收。
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
FixedThreadPool
创建该线程池需要指定线程数,表示最多只能这么多线程同时运行,且这些线程都不会被回收。此处提醒各位,LinkedBlockingQueue是不推荐使用,因为有可能出现队列还没慢内存已经满了的情况。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
此处分享《Java编程实战》中关于如何设置线程池大小的一段文字:
线程数量不宜过多,否则会浪费资源在上下文的切换上。线程数量过少,处理器可能无法充分利用。此处仅对CPU密集型的计算做出以下建议:线程池大小 = CPU核数 * CPU期望利用率 * (1 + 等待时间 / 计算时间)。
ScheduledPool
ScheduledExecutorService继承了ThreadPoolExecutor,传参如下:
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE,
DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
new DelayedWorkQueue());
}
该线程池需要传入核心线程数,仅仅表示这些线程不需要被回收。线程池用的是DelayedWorkQueue,即线程池中的任务会根据延迟时间顺序执行任务。该线程池可用于任务调度等场景。
拒绝策略
自定义一个拒绝策略的例子,代码演示如下:
public static void main(String[] args) {
ExecutorService service = new ThreadPoolExecutor(
1, // corePoolSize
1, // maximumPoolSize
0, // keepAliveTime
TimeUnit.SECONDS,
new SynchronousQueue<>(),
Executors.defaultThreadFactory(),
new MyHandler());
for (int i = 0; i < 3; i++) {
service.submit(() -> {
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
}
static class MyHandler implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
System.out.println("trigger rejected policy");
}
}
ThreadPoolExecutor源码解析
常用变量解释
// int有32位,高3位表示线程池状态,低29位表示worker数量,即线程池里有多少线程
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// Integer.SIZE为32,所以COUNT_BITS为29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING = -1 << COUNT_BITS; // 正常运行
private static final int SHUTDOWN = 0 << COUNT_BITS; // 调用了shutdown方法了进入了SHUTDOWN状态
private static final int STOP = 1 << COUNT_BITS; // 调用了shutdownnow马上停止
private static final int TIDYING = 2 << COUNT_BITS; // 调用了shutdown然后这个线程也执行完了,现在正在整理的这个过程叫TIDYING
private static final int TERMINATED = 3 << COUNT_BITS; // 整个线程全部结束
// Packing and unpacking ctl
// 获取线程池状态,通过按位与操作,低29位将全部变成0
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 获取线程池worker数量,通过按位与操作,高3位将全部变成0
private static int workerCountOf(int c) { return c & CAPACITY; }
// 根据线程池状态和线程池worker数量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
// 线程池状态小于xx
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
// 线程池状态大于等于xx
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
构造方法
参数上面已经介绍过了,不再赘述。
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
// 基本类型参数校验
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
// 空指针校验
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime中
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
提交执行任务的过程
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
// worker数量比核心线程数小,直接创建worker执行任务
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// worker数量超过核心线程数,任务直接进入队列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。
// 这里需要recheck,任务入队列前后线程池的状态可能会发生变化。
if (! isRunning(recheck) && remove(command))
reject(command);
// 这里需要判断0值,主要是在线程池构造方法中,核心线程数允许为0
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。
// 这里有3点需要注意:
// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态
// 2. addWorker第2个参数表示是否创建核心线程
// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作
else if (!addWorker(command, false))
reject(command);
}
创建Worker
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
// 外层自旋
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 这个条件写得比较难懂,调整至如下等价条件:
// (rs > SHUTDOWN) ||
// (rs == SHUTDOWN && firstTask != null) ||
// (rs == SHUTDOWN && workQueue.isEmpty())
// 1. 线程池状态大于SHUTDOWN时,直接返回false
// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false
// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
// 内层自旋
for (;;) {
int wc = workerCountOf(c);
// worker数量超过容量,直接返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 使用CAS的方式增加worker数量。
// 若增加成功,则直接跳出外层循环进入到第二部分
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 线程池状态发生变化,对外层循环进行自旋
if (runStateOf(c) != rs)
continue retry;
// 其他情况,直接内层循环进行自旋即可
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
// worker的添加必须是串行的,因此需要加锁
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
// 这儿需要重新检查线程池状态
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// worker已经调用过了start()方法,则不再创建worker
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// worker创建并添加到workers成功
workers.add(w);
// 更新`largestPoolSize`变量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 启动worker线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
将线程添加到容器时肯定要做到同步,为了追求效率,此处没有使用synchronized而是使用了自旋。开始的两层自旋就是添加Worker,即在ctl的29位中加1。首先获取状态值,判断了一圈不符合则返回添加失败。然后先计算当前Worker数量是不是超过容量,超过则返回添加失败,否则用CAS的方式加。接着第二步串行地向workers中添加线程。
线程池Worker任务单元
Worker是一个Runnable,且封装了一个线程,在run方法中运行线程。核心就是用线程工厂创建了一个线程。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// 省略代码...
}
线程执行逻辑runworker
上面提到的Worker不仅可以放在线程中执行,同时继承了AbstractQueuedSynchronizer,本身也是一把锁,可以用来做同步任务。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 调用unlock()是为了让外部可以中断
w.unlock(); // allow interrupts
// 这个变量用于判断是否进入过自旋(while循环)
boolean completedAbruptly = true;
try {
// 这儿是自旋
// 1. 如果firstTask不为null,则执行firstTask;
// 2. 如果firstTask为null,则调用getTask()从队列获取任务。
// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待
while (task != null || (task = getTask()) != null) {
// 这儿对worker进行加锁,是为了达到下面的目的
// 1. 降低锁范围,提升性能
// 2. 保证每个worker执行的任务是串行的
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 如果线程池正在停止,则对当前线程进行中断操作
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
// 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。
// 这两个方法在当前类里面为空实现。
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
// 帮助gc
task = null;
// 已完成任务数加一
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 自旋操作被退出,说明线程池正在结束
processWorkerExit(w, completedAbruptly);
}
}
ForkJoinPool
WorkStealingPool
WorkStealingPool中每个线程都有自己单独的队列,任务往线程池丢的时候会在每个线程的队列上不断累计。某个线程执行完自己的任务队列之后就会去另外一个线程上面偷,避免其他线程没活干,只能盯着另一个线程忙到头也忙不完。
public static ExecutorService newWorkStealingPool() {
return new ForkJoinPool
(Runtime.getRuntime().availableProcessors(),
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null, true);
}
实际上WorkStealingPool用的是ForkJoinPool,所以本质上他是一个ForkJoinPool
ForkJoinPool
ForkJoinPool适合把大任务切分成一个个的小任务去运行,每个小任务还可以继续切分。切分后的任务执行完后要进行一个汇总,汇总就是子任务汇总到父任务的过程。任务的切分和汇总都是递归的过程。
以计算1000000个随机数的和为例:
public class TestForkJoinPool {
static int[] nums = new int[1000000];
static final int MAX_NUM = 50000;
static Random r = new Random();
static {
for (int i = 0; i < nums.length; i++) {
nums[i] = r.nextInt(100);
}
System.out.println("正确的结果:" + Arrays.stream(nums).sum());
}
// 没有返回值
static class AddTask extends RecursiveAction {
int start, end;
AddTask(int s, int e) {
start = s;
end = e;
}
@Override
protected void compute() {
if (end - start <= MAX_NUM) {
long sum = 0L;
for (int i = start; i < end; i++) {
sum += nums[i];
}
System.out.println("from:" + start + " to:" + end + " = " + sum);
} else {
int middle = start + (end - start) / 2;
AddTask subTask1 = new AddTask(start, middle);
AddTask subTask2 = new AddTask(middle, end);
subTask1.fork();
subTask2.fork();
}
}
}
// 有返回值
static class AddTaskRet extends RecursiveTask<Long> {
private static final long serialVersionUID = 1L;
int start, end;
AddTaskRet(int s, int e) {
start = s;
end = e;
}
@Override
protected Long compute() {
if (end - start <= MAX_NUM) {
long sum = 0L;
for (int i = start; i < end; i++) {
sum += nums[i];
}
return sum;
}
int middle = start + (end - start) / 2;
AddTaskRet subTask1 = new AddTaskRet(start, middle);
AddTaskRet subTask2 = new AddTaskRet(middle, end);
subTask1.fork();
subTask2.fork();
return subTask1.join() + subTask2.join();
}
}
public static void main(String[] args) {
ForkJoinPool fjp1 = new ForkJoinPool();
AddTask task1 = new AddTask(0, nums.length);
fjp1.execute(task1);
task1.join();
ForkJoinPool fjp2 = new ForkJoinPool();
AddTaskRet task2 = new AddTaskRet(0, nums.length);
fjp2.execute(task2);
long result = task2.join();
System.out.println(result);
try {
Thread.sleep(Integer.MAX_VALUE);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
首先要判断需求是否可以被拆分,然后再看ForkJoinPool的使用。使用时需要定义其为ForkJoinTask,实际的使用用的是他的子类RecursiveAction或RecursiveTask,均需要重写compute方法。不同的是RecursiveAction.compute不带返回值,RecursiveTask.compute有返回值。上面代码分别用两种方式实现了需求。
parallelStream
// todo 源码解析