注:摘自修言的掘金小册,完整版请购买小册查看
冒泡排序
冒泡排序的过程,就是从第一个元素开始,重复比较相邻的两个项,若第一项比第二项更大,则交换两者的位置;反之不动。
每一轮操作,都会将这一轮中最大的元素放置到数组的末尾。假如数组的长度是 n,那么当我们重复完 n 轮的时候,整个数组就有序了。
function betterBubbleSort(arr) {
const len = arr.length
for(let i=0;i<len;i++) {
// 区别在这里,我们加了一个标志位
let flag = false
for(let j=0;j<len-1-i;j++) {
if(arr[j] > arr[j+1]) {
[arr[j], arr[j+1]] = [arr[j+1], arr[j]]
// 只要发生了一次交换,就修改标志位
flag = true
}
}
// 若一次交换也没发生,则说明数组有序,直接放过
if(flag == false) return arr;
}
return arr
}
冒泡排序的时间复杂度
我们分最好、最坏和平均来看:
- 最好时间复杂度:它对应的是数组本身有序这种情况。在这种情况下,我们只需要作比较(n-1 次),而不需要做交换。时间复杂度为 O(n)
- 最坏时间复杂度: 它对应的是数组完全逆序这种情况。在这种情况下,每一轮内层循环都要执行,重复的总次数是 n(n-1)/2 次,因此时间复杂度是 O(n^2)
- 平均时间复杂度:这个东西比较难搞,它涉及到一些概率论的知识。实际面试的时候也不会有面试官摁着你让你算这个,这里记住平均时间复杂度是 O(n^2) 即可。
选择排序
选择排序的关键字是“最小值”:循环遍历数组,每次都找出当前范围内的最小值,把它放在当前范围的头部;然后缩小排序范围,继续重复以上操作,直至数组完全有序为止。
function selectSort(arr) {
// 缓存数组长度
const len = arr.length
// 定义 minIndex,缓存当前区间最小值的索引,注意是索引
let minIndex
// i 是当前排序区间的起点
for(let i = 0; i < len - 1; i++) {
// 初始化 minIndex 为当前区间第一个元素
minIndex = i
// i、j分别定义当前区间的上下界,i是左边界,j是右边界
for(let j = i; j < len; j++) {
// 若 j 处的数据项比当前最小值还要小,则更新最小值索引为 j
if(arr[j] < arr[minIndex]) {
minIndex = j
}
}
// 如果 minIndex 对应元素不是目前的头部元素,则交换两者
if(minIndex !== i) {
[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]]
}
}
return arr
}
选择排序的时间复杂度
在时间复杂度这方面,选择排序没有那么多弯弯绕绕:最好情况也好,最坏情况也罢,两者之间的区别仅仅在于元素交换的次数不同,但都是要走内层循环作比较的。因此选择排序的三个时间复杂度都对应两层循环消耗的时间量级: O(n^2)。
插入排序
插入排序的核心思想是“找到元素在它前面那个序列中的正确位置”。
具体来说,插入排序所有的操作都基于一个这样的前提:当前元素前面的序列是有序的。基于这个前提,从后往前去寻找当前元素在前面那个序列里的正确位置。
function insertSort(arr) {
// 缓存数组长度
const len = arr.length
// temp 用来保存当前需要插入的元素
let temp
// i用于标识每次被插入的元素的索引
for(let i = 1;i < len; i++) {
// j用于帮助 temp 寻找自己应该有的定位
let j = i
temp = arr[i]
// 判断 j 前面一个元素是否比 temp 大
while(j > 0 && arr[j-1] > temp) {
// 如果是,则将 j 前面的一个元素后移一位,为 temp 让出位置
arr[j] = arr[j-1]
j--
}
// 循环让位,最后得到的 j 就是 temp 的正确索引
arr[j] = temp
}
return arr
}
插入排序的时间复杂度
- 最好时间复杂度:它对应的数组本身就有序这种情况。此时内层循环只走一次,整体复杂度取决于外层循环,时间复杂度就是一层循环对应的 O(n)。
- 最坏时间复杂度:它对应的是数组完全逆序这种情况。此时内层循环每次都要移动有序序列里的所有元素,因此时间复杂度对应的就是两层循环的 O(n^2)
- 平均时间复杂度:O(n^2)
归并排序
归并排序是对分治思想的典型应用,它按照如下的思路对分治思想“三步走”的框架进行了填充:
分解子问题:将需要被排序的数组从中间分割为两半,然后再将分割出来的每个子数组各分割为两半,重复以上操作,直到单个子数组只有一个元素为止。
求解每个子问题:从粒度最小的子数组开始,两两合并、确保每次合并出来的数组都是有序的。(这里的“子问题”指的就是对每个子数组进行排序)。
合并子问题的解,得出大问题的解:当数组被合并至原有的规模时,就得到了一个完全排序的数组
function mergeSort(arr) {
const len = arr.length
// 处理边界情况
if(len <= 1) {
return arr
}
// 计算分割点
const mid = Math.floor(len / 2)
// 递归分割左子数组,然后合并为有序数组
const leftArr = mergeSort(arr.slice(0, mid))
// 递归分割右子数组,然后合并为有序数组
const rightArr = mergeSort(arr.slice(mid,len))
// 合并左右两个有序数组
arr = mergeArr(leftArr, rightArr)
// 返回合并后的结果
return arr
}
function mergeArr(arr1, arr2) {
// 初始化两个指针,分别指向 arr1 和 arr2
let i = 0, j = 0
// 初始化结果数组
const res = []
// 缓存arr1的长度
const len1 = arr1.length
// 缓存arr2的长度
const len2 = arr2.length
// 合并两个子数组
while(i < len1 && j < len2) {
if(arr1[i] < arr2[j]) {
res.push(arr1[i])
i++
} else {
res.push(arr2[j])
j++
}
}
// 若其中一个子数组首先被合并完全,则直接拼接另一个子数组的剩余部分
if(i<len1) {
return res.concat(arr1.slice(i))
} else {
return res.concat(arr2.slice(j))
}
}
归并排序的时间复杂度分析
O(nlog(n))
快速排序
快速排序在基本思想上和归并排序是一致的,仍然坚持“分而治之”的原则不动摇。区别在于,快速排序并不会把真的数组分割开来再合并到一个新数组中去,而是直接在原有的数组内部进行排序。
快速排序会将原始的数组筛选成较小和较大的两个子数组,然后递归地排序两个子数组。
// 快速排序入口
function quickSort(arr, left = 0, right = arr.length - 1) {
// 定义递归边界,若数组只有一个元素,则没有排序必要
if(arr.length > 1) {
// lineIndex表示下一次划分左右子数组的索引位
const lineIndex = partition(arr, left, right)
// 如果左边子数组的长度不小于1,则递归快排这个子数组
if(left < lineIndex-1) {
// 左子数组以 lineIndex-1 为右边界
quickSort(arr, left, lineIndex-1)
}
// 如果右边子数组的长度不小于1,则递归快排这个子数组
if(lineIndex<right) {
// 右子数组以 lineIndex 为左边界
quickSort(arr, lineIndex, right)
}
}
return arr
}
// 以基准值为轴心,划分左右子数组的过程
function partition(arr, left, right) {
// 基准值默认取中间位置的元素
let pivotValue = arr[Math.floor(left + (right-left)/2)]
// 初始化左右指针
let i = left
let j = right
// 当左右指针不越界时,循环执行以下逻辑
while(i<=j) {
// 左指针所指元素若小于基准值,则右移左指针
while(arr[i] < pivotValue) {
i++
}
// 右指针所指元素大于基准值,则左移右指针
while(arr[j] > pivotValue) {
j--
}
// 若i<=j,则意味着基准值左边存在较大元素或右边存在较小元素,交换两个元素确保左右两侧有序
if(i<=j) {
swap(arr, i, j)
i++
j--
}
}
// 返回左指针索引作为下一次划分左右子数组的依据
return i
}
// 快速排序中使用 swap 的地方比较多,我们提取成一个独立的函数
function swap(arr, i, j) {
[arr[i], arr[j]] = [arr[j], arr[i]]
}
快速排序的时间复杂度分析
快速排序的时间复杂度的好坏,是由基准值来决定的。
- 最好时间复杂度:它对应的是这种情况——我们每次选择基准值,都刚好是当前子数组的中间数。这时,可以确保每一次分割都能将数组分为两半,进而只需要递归 log(n) 次。这时,快速排序的时间复杂度分析思路和归并排序相似,最后结果也是
O(nlog(n))。 - 最坏时间复杂度:每次划分取到的都是当前数组中的最大值/最小值。大家可以尝试把这种情况代入快排的思路中,你会发现此时快排已经退化为了冒泡排序,对应的时间复杂度是
O(n^2)。 - 平均时间复杂度:
O(nlog(n))