「这是我参与2022首次更文挑战的第40天,活动详情查看:2022首次更文挑战」
给你一个非负整数数组 nums ,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
假设你总是可以到达数组的最后一个位置。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
提示:
1 <= nums.length <= 1040 <= nums[i] <= 1000
这道题是典型的贪心算法,通过局部最优解得到全局最优解。以下两种方法都是使用贪心算法实现,只是贪心的策略不同。
反向查找出发位置
我们的目标是到达数组的最后一个位置,因此我们可以考虑最后一步跳跃前所在的位置,该位置通过跳跃能够到达最后一个位置。
如果有多个位置通过跳跃都能够到达最后一个位置,那么我们应该如何进行选择呢?直观上来看,我们可以「贪心」地选择距离最后一个位置最远的那个位置,也就是对应下标最小的那个位置。因此,我们可以从左到右遍历数组,选择第一个满足要求的位置。
找到最后一步跳跃前所在的位置之后,我们继续贪心地寻找倒数第二步跳跃前所在的位置,以此类推,直到找到数组的开始位置。
/**
* @param {number[]} nums
* @return {number}
*/
var jump = function(nums) {
// 必须到达end下标的数字
let end = nums.length - 1;
let length = 0;
while (end > 0) {
// 最远到这个下标的前下标
let max = -1;
for (let j = end - 1; j >= 0; j--) {
if (end - j <= nums[j]) {
max = j;
}
}
if (max == -1) {
return 0;
}
end = max;
length += 1;
}
return length;
};