OpenCV-Python 图像的噪声处理

164 阅读1分钟
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# 设置兼容中文
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
D:\Anaconda\AZWZ\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:
D:\Anaconda\AZWZ\lib\site-packages\numpy\.libs\libopenblas.NOIJJG62EMASZI6NYURL6JBKM4EVBGM7.gfortran-win_amd64.dll
D:\Anaconda\AZWZ\lib\site-packages\numpy\.libs\libopenblas.WCDJNK7YVMPZQ2ME2ZZHJJRJ3JIKNDB7.gfortran-win_amd64.dll
  warnings.warn("loaded more than 1 DLL from .libs:\n%s" %
dogsp = cv.imread('img/dogsp.jpeg')
dogGauss = cv.imread('img/dogGauss.jpeg')

1.均值滤波(计算简单,速度快,但容易使照片模糊)

dog1 = cv.blur(dogsp,(5,5))
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(dogsp[:,:,::-1])
plt.title('原图')
plt.subplot(1,2,2)
m1 = plt.imshow(dog1[:,:,::-1])
plt.title('均值滤波处理后')
Text(0.5, 1.0, '均值滤波处理后')




[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oxvjjmu5-1637754042151)(output_3_1.png)]

dog2 = cv.blur(dogGauss,(5,5))
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(dogGauss[:,:,::-1])
plt.title('原图')
plt.subplot(1,2,2)
m1 = plt.imshow(dog2[:,:,::-1])
plt.title('均值滤波处理后')
Text(0.5, 1.0, '均值滤波处理后')




[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fndRVEt9-1637754042153)(output_4_1.png)]

2.高斯滤波(中心点权重较高,周围点权重较低,比较适合处理高斯噪声)

dog1 = cv.GaussianBlur(dogsp,(3,3),1)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(dogsp[:,:,::-1])
plt.title('原图')
plt.subplot(1,2,2)
m1 = plt.imshow(dog1[:,:,::-1])
plt.title('高斯滤波处理后')
Text(0.5, 1.0, '高斯滤波处理后')




[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iCKyDvp5-1637754042154)(output_6_1.png)]

dog2 = cv.GaussianBlur(dogGauss,(3,3),1)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(dogGauss[:,:,::-1])
plt.title('原图')
plt.subplot(1,2,2)
m1 = plt.imshow(dog2[:,:,::-1])
plt.title('高斯滤波处理后')
Text(0.5, 1.0, '高斯滤波处理后')




[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EiNrllKR-1637754042156)(output_7_1.png)]

3.中值滤波(使用邻域灰度值的中值作为中心点灰度值,非常适合处理椒盐噪声)

dog1 = cv.medianBlur(dogsp,5)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(dogsp[:,:,::-1])
plt.title('原图')
plt.subplot(1,2,2)
m1 = plt.imshow(dog1[:,:,::-1])
plt.title('中值滤波处理后')
Text(0.5, 1.0, '中值滤波处理后')




[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-24CGWlvp-1637754042158)(output_9_1.png)]

dog2 = cv.medianBlur(dogGauss,5)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(dogGauss[:,:,::-1])
plt.title('原图')
plt.subplot(1,2,2)
m1 = plt.imshow(dog2[:,:,::-1])
plt.title('中值滤波处理后')
Text(0.5, 1.0, '中值滤波处理后')




[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PcXfKoNh-1637754042158)(output_10_1.png)]