【优化求解】基于二进制蜻蜓算法求解最优目标matlab源码

111 阅读1分钟

1 模型

2 部分代码

%-------------------------------------------------------------------------%%  Binary Dragonfly Algorithm (BDA) source codes demo version             %                                  %%-------------------------------------------------------------------------%​​%---Inputs-----------------------------------------------------------------% feat:   features% label:  labelling% N:      Number of dragonflies% T:      Maximum number of iterations% Dmax:   Maximum velocity% *Note: k-value of KNN & hold-out setting can be modified in jFitnessFunction.m%---Outputs----------------------------------------------------------------% sFeat:  Selected features% Sf:     Selected feature index% Nf:     Number of selected features% curve:  Convergence curve%--------------------------------------------------------------------------​%% Binary Dragonfly Algorithmclc, clear, close; % Benchmark data set load ionosphere.mat; % Parameter settingN=10;T=100; Dmax=6;% Binary Dragonfly Algorithm[sFeat,Sf,Nf,curve]=jBDA(feat,label,N,T,Dmax);% Plot convergence curvefigure(); plot(1:T,curve); xlabel('Number of iterations');ylabel('Fitness Value'); title('BDA'); grid on;​

3 仿真结果

4 参考文献

[1]董海, 徐德珉. 基于蜻蜓算法和最小二乘向量机的小批量生产质量预测[J]. 科技管理研究, 2019, 000(022):256-260.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,有科研问题可私信交流。