【图像识别】基于计算机视觉实现水果识别matlab代码

288 阅读4分钟

1 简介

本文提出了一种基于计算机视觉的复杂环境下果蔬识别方法,包括以下步骤:首先,获取待识别果蔬图像;其次,将获取到的果蔬图像进行预处理,预处理后的图像被分割为果蔬区域和背景区域;提取预处理后的果蔬图像特征,其中提取的图像特征为颜色特征和纹理特征;然后,采用自适应加权方法对果蔬特征进行融合;最后,采用最近邻分类算法对果蔬进行识别.本发明相比已有的果蔬识别系统,算法复杂度低,识别率高,具有很强的使用性,可以有效的应用于日常生活中.

2 部分代码

function varargout = untitled(varargin)
% UNTITLED MATLAB code for untitled.fig
%     UNTITLED, by itself, creates a new UNTITLED or raises the existing
%     singleton*.
%
%     H = UNTITLED returns the handle to a new UNTITLED or the handle to
%     the existing singleton*.
%
%     UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the local
%     function named CALLBACK in UNTITLED.M with the given input arguments.
%
%     UNTITLED('Property','Value',...) creates a new UNTITLED or raises the
%     existing singleton*. Starting from the left, property value pairs are
%     applied to the GUI before untitled_OpeningFcn gets called. An
%     unrecognized property name or invalid value makes property application
%     stop. All inputs are passed to untitled_OpeningFcn via varargin.
%
%     *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
%     instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help untitled

% Last Modified by GUIDE v2.5 15-Jan-2017 01:03:42

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                  'gui_Singleton',  gui_Singleton, ...
                  'gui_OpeningFcn', @untitled_OpeningFcn, ...
                  'gui_OutputFcn',  @untitled_OutputFcn, ...
                  'gui_LayoutFcn', [] , ...
                  'gui_Callback',   []);
if nargin && ischar(varargin{1})
   gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
  [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
   gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before untitled is made visible.
function untitled_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject   handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles   structure with handles and user data (see GUIDATA)
% varargin   command line arguments to untitled (see VARARGIN)

% Choose default command line output for untitled
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes untitled wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = untitled_OutputFcn(hObject, eventdata, handles) 
% varargout cell array for returning output args (see VARARGOUT);
% hObject   handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles   structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject   handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles   structure with handles and user data (see GUIDATA)
global I FilledLabel HSV MeanHue  Ecllipseratio Label num Premeter Area
for i = 1 : num
       Premeter(i) = 0;
   end

  [row,col] = size(Label);
   for i = 1 : row
       for j = 1 : col
           if(Label(i,j) > 0)
               Premeter(Label(i,j)) = Premeter(Label(i,j)) + 1;    %计算标记后的各块图形边界中像素的个数的总数
           end
       end
   end

%计算各个图形单元的面积
FilledLabel=imfill(Label,'holes');  %填充打过标记的边界线中间围成的图形区域
for i = 1 : num
   Area(i) = 0;
end

[row,col] = size(FilledLabel);
for i = 1 : row
   for j = 1 : col
       if(FilledLabel(i,j) > 0)
           Area(FilledLabel(i,j)) = Area(FilledLabel(i,j)) + 1;   %通过统计像素点个数的方式来求各形状的面积
       end
   end
end

%计算各个图形单元的圆度
for i = 1 : num     
   Ecllipseratio(i) = 4*pi*Area(i)/Premeter(i)^2;
end

%计算各个图像的颜色(色度)

HSV=rgb2hsv(I);   %转换为HSV,为后面的颜色元素的提取做准备

[row,col] = size(FilledLabel);   %统计填充后的图形中各块图形所含像素的个数的多少
MeanHue = zeros(1,num);
   for i = 1 : num
       Hue = zeros(Area(i),1);
       nPoint = 0;
       for j = 1 : row
           for k = 1 : col
               if(FilledLabel(j,k) == i)
                   nPoint = nPoint + 1;
                   Hue(nPoint,1) = HSV(j,k,1);
               end
           end
       end
       
       Hue(:,i) = sort(Hue(:,1));
       for j = floor(nPoint*0.1) : floor(nPoint*0.9)
           MeanHue(i) = MeanHue(i) + Hue(j,1);
       end
       MeanHue(i) = MeanHue(i) / (0.8*nPoint);  %计算出平均的色度值
   end





% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject   handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles   structure with handles and user data (see GUIDATA)
global I Area FilledLabel HSV MeanHue  Ecllipseratio Label num Premeter


HSV=rgb2hsv(I);   %转换为HSV,为后面的颜色元素的提取做准备

[row,col] = size(FilledLabel);   %统计填充后的图形中各块图形所含像素的个数的多少
MeanHue = zeros(1,num);
   for i = 1 : num
       Hue = zeros(Area(i),1);
       nPoint = 0;
       for j = 1 : row
           for k = 1 : col
               if(FilledLabel(j,k) == i)
                   nPoint = nPoint + 1;
                   Hue(nPoint,1) = HSV(j,k,1);
               end
           end
       end
       
       Hue(:,i) = sort(Hue(:,1));
       for j = floor(nPoint*0.1) : floor(nPoint*0.9)
           MeanHue(i) = MeanHue(i) + Hue(j,1);
       end
       MeanHue(i) = MeanHue(i) / (0.8*nPoint);  %计算出平均的色度值
   end
   %识别黄瓜

%构建黄瓜的分类器,在二维特征空间对各个图像进行类别区分
huanggua=0;
for i=1:num
   if((Ecllipseratio(i)<0.7))%分类器识别黄瓜的准则:判断各个图形中平均圆率值小于0.7的为黄瓜
   huanggua=i;
   end
end

       end
%变换生成最终的结果图像,图像中显示的结果即对应分类器中指定的类别
juzimatrix = hsv2rgb(juziHSV);   %转换为RGB彩图,彩图中已经滤去了其余水果,只剩下橘子
subplot(2,2,4),imshow(juzimatrix);

3 仿真结果

4 参考文献

[1]陶华伟, 赵力, 高瑞军, 黄永盛, 奚吉, & 虞玲等. 一种基于计算机视觉的复杂环境下果蔬识别方法.

部分理论引用网络文献,若有侵权联系博主删除。

5 MATLAB代码与数据下载地址

见博客主页