【预测模型】基于遗传算法优化BP神经网络预测数据matlab源码

120 阅读2分钟

一、简介

为了提高BP神经网络预测模型对混沌时间序列的预测准确性,提出了一种基于遗传算法优化BP神经网络的改进混沌时间序列预测方法.利用遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解,并将该预测方法应用到几个典型混沌时间序列和房价时间序列进行有效性验证.仿真结果表明,该方法对典型混沌时间序列和房价具有较好的非线性拟合能力和更高的预测准确性.

img

img

img

img

img

二、源代码

% 清空环境变量
clc
clear
% 
%% 网络结构建立
%读取数据
load data input output

%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;

%训练数据和预测数据
input_train=input(1:1900,:)';
input_test=input(1901:2000,:)';
output_train=output(1:1900)';
output_test=output(1901:2000)';

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%构建网络
net=newff(inputn,outputn,hiddennum);

%% 遗传算法参数初始化
maxgen=10;                         %进化代数,即迭代次数
sizepop=10;                        %种群规模
pcross=[0.3];                       %交叉概率选择,0和1之间
pmutation=[0.1];                    %变异概率选择,0和1之间

%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

lenchrom=ones(1,numsum);        
bound=[-3*ones(numsum,13*ones(numsum,1)];    %数据范围

%------------------------------------------------------种群初始化--------------------------------------------------------
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体
%初始化种群

end
%% 遗传算法结果分析 
figure(1)
[r c]=size(trace);
plot([1:r]',trace(:,2),'b--');
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
legend('平均适应度','最佳适应度');
disp('适应度                   变量');


%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;

%网络训练
[net,per2]=train(net,inputn,outputn);

%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
figure(2)
plot(error,'ro-')
ylabel('误差值')
title('遗传算法优化BP神经网络')
figure(3)
plot(output_test,'r + -');
hold on;
plot(test_simu,'b * -')
hold off
legend('真实值','预测值');
title('遗传算法优化BP神经网络')

三、运行结果

四、参考文献

[1]李松, 刘力军, and 解永乐. "遗传算法优化BP神经网络的短时交通流混沌预测." 控制与决策 26.10(2011).

5 MATLAB代码与数据下载地址

见博客主页