【路径规划】一种基于改进蚁群算法的多配送中心车辆路径优化方法matlab源码

202 阅读3分钟

1模型介绍

 一种基于蚁群算法的多配送中心车辆路径优化方法,首先,针对多配送中心车辆路径优化问题,对各个客户点设计了以最近配送中心为启发式信息的惩罚函数;其次,将具有上述启发式信息的罚函数加入到各配送点的信息素更新过程中,从而提高了算法的搜索效率.本发明在实际物流配送车辆路径优化应用中可以快速的得到可靠的最佳配送路径.

1.1 多中心VRP模型

1.2 蚁群算法原理

 蚁群算法(AG)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,并首先使用在解决TSP(旅行商问题)上。之后,又系统研究了蚁群算法的基本原理和数学模型1、蚂蚁在路径上释放信息素。

2、碰到还没走过的路口,就随机挑选一条路走。同时,释放与路径长度有关的信息素。

3、信息素浓度与路径长度成反比。后来的蚂蚁再次碰到该路口时,就选择信息素浓度较高路径。

4、最优路径上的信息素浓度越来越大。

5、最终蚁群找到最优寻食路径。

1.3 蚁群算法流程图

2 部分代码

clc;
clear;
%% 多配送中心的车辆调度问题
%加载数据
load data.mat
%计算位置矩阵
m=size(X,1);
D=zeros(m,m);
for i=1:m
   for j=1:m
       D(i,j)=norm(X(i,:)-X(j,:));
       D(j,i)=D(i,j);
       D(i,i)=eps;
   end
end
%计算配送中心的位置
nume=zeros(20,20);
for i=1:20
   for j=1:20 
       temp=[D(:,i) D(:,j)];
      [num,pp]=min(temp,[],2);
       nume(i,j)=sum(num);
   end
end
[mum1,index1]=min(nume);
[mun2,index2]=min(mum1,[],2);
w1=index1(index2);
w2=index2;
%给各个配送中心分配顾客集
H=[];
S=[];
for i=1:20
   if D(i,w1)<D(i,w2)
       H=[H i];
   else 
       S=[S i];
   end
end
n1=size(H,2);
n2=size(S,2);
%蚁群算法求最小的车辆总行程
%设置参数
Pop=60;%蚁群数目
Alpha=1;%重要度系数
Beta=1;%Beta:能见度系数
gama=2;
Rho=0.15;%挥发度系数
MAXGEN=50;%迭代次数
Q=15;%信息更新参数
W=9;%W:车辆载重量
T=10;
w=[2.5,1.5,1.8,2.0,0.8,1.5,1.0,2.5,3.0,1.7,0.6,0.2,2.4,1.9,2.0,0.7,0.5,2.2,3.1,0.1];%每个客户所需的货物重量
t=[1.5,3.8,0.5,3,2.6,3.6,1.4,2.4,2,3.4,2,1.2,0.5,0.8,1.3,1.6,1.7,0.5,0.8,1.4];%每个客户所需的货物的容积
load_w_H=0;
load_t_H=0;
load_w_S=0;
load_t_S=0;
Eta=1./D;%启发因子,设为距离的倒数
Tau_H=ones(m,m);%信息素矩阵
Tau_S=ones(m,m);
Tabu_H=zeros(Pop,n1+10);%存储并记录路径的生成
iter=1;
G_best_route_H=[MAXGEN,n1+10];%各代最佳路线 
G_best_route_S=[MAXGEN,n2+10];
G_best_length_H=zeros(MAXGEN,1);
G_best_length_S=zeros(MAXGEN,1);
length_ave_H=zeros(MAXGEN,1);%各代路线的平均长度
length_ave_S=zeros(MAXGEN,1);
G_best_length=zeros(MAXGEN,1);
%开始进行迭代

Tabu_H=zeros(Pop,n1)
load_w_H=0;
Tabu_S=zeros(Pop,n2)
load_w_S=0;
end
%% 第七步:输出结果 
[best_length_H,index_H]=min(G_best_length_H);
[best_length_S,index_S]=min(G_best_length_S);
best_length=best_length_H+best_length_S;
best_route_H=G_best_route_H(index_H(1),:);
best_route_H=best_route_H(best_route_H>0);
best_route_S=G_best_route_S(index_S(1),:);
best_route_S=best_route_S(best_route_S>0);
disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');
disp(['最短路径为:',num2str(best_route_H)]);
disp(['           ',num2str(best_route_S)]);
disp(['最短路程为:',num2str(best_length)]);
%% 第八步:绘制散点图和巡游过程图
%画出散点图,并标注配送中心的位置
figure(1)
plot(X(:,1),X(:,2),'o');
hold on
plot(X(best_route_H,1),X(best_route_H,2),'o-');
plot(X(best_route_S,1),X(best_route_S,2),'o-');
%plot([X(w1,1),X(w2,1)],[X(w1,2),X(w2,2)],'rs','MarkerSize',9);
text([X(w1,1),X(w2,1)],[X(w1,2),X(w2,2)],'\leftarrow 配送中心');
for i=1:m
   text(X(i,1),X(i,2),[' ' num2str(i)])
end
figure(2)
plot(1:MAXGEN,G_best_length) ;
hold on 
plot(1:MAXGEN,length_ave);
xlabel('迭代次数/次');
ylabel('路径长度/km');
legend('最优路径长度的变化 ',' 路径长度均值变化 ');

3 仿真结果

4 参考文献

[1]唐增明. 基于蚁群算法的多中心车辆调度问题研究[D]. 桂林电子科技大学, 2007.

部分理论引用网络文献,若有侵权联系博主删除。

5 MATLAB代码与数据下载地址

见博客主页