定义:定义一系列的算法,把它们一个个封装起来,并且使它们可以相互替换。
使用策略模式计算奖金
很多公司的年终奖是根据员工的工资基数和年底绩效情况来发放的。例如,绩效为S的人年终奖有4倍工资,绩效为A的人年终奖有3倍工资,而绩效为B的人年终奖是2倍工资。假设财务部要求我们提供一段代码,来方便他们计算员工的年终奖。
1.最初的代码实现
编写一个名为calculateBonus的函数来计算每个人的奖金数额。calculateBonus函数要正确工作,需要接收两个参数:员工的工资数额和他的绩效考核等级。代码如下:
var calculateBonus = function(performanceLevel, salary) {
if (performanceLevel === 'S') {
return salary * 4;
}
if (performanceLevel === 'A') {
return salary * 3;
}
if (performanceLevel === 'B') {
return salary * 2;
}
};
calculateBonus('B', 20000); // 40000
calculateBonus('S', 6000); // 24000
这段代码十分简单,但存在显而易见的缺点:
calculateBonus函数比较庞大,包含很多if-else语句,这些语句需要覆盖所有的逻辑分支。calculateBonus函数缺乏弹性,如果增加了一种新的绩效等级C,或者想把绩效S的奖金系数改为5,那我们必须深入calculateBonus函数的内部实现,这是违反开放-封闭原则的。- 算法的复用性差,如果在程序的其他地方需要重用这些计算奖金的算法呢?我们的选择只有复制粘贴。
2.使用组合函数重构代码
一般最容易想到的方法就是使用组合函数来重构代码,我们把各种算法封装到一个个的小函数里面,这些小函数有着良好的命名,可以一目了然地知道它对应着哪种算法,它们也可以被复用在程序的其他地方:
var performanceS = function(salary) {
return salary * 4;
};
var performanceA = function(salary) {
return salary * 3;
};
var performanceB = function(salary) {
return salary * 2;
};
var calculateBonus = function(performanceLevel, salary) {
if (performanceLevel === 'S') {
return performanceS(salary);
}
if (performanceLevel === 'A') {
return performanceA(salary);
}
if (performanceLevel === 'B') {
return performanceB(salary);
}
};
calculateBonus('A', 10000); // 30000
我们的程序得到了改善,但这种改善非常有限,我们依然没有解决最重要的问题:calculateBonus函数有可能越来越庞大,而且在系统变化的时候缺乏弹性。
3.使用策略模式重构代码
策略模式指的是定义一系列的算法,把它们一个个封装起来。将不变的部分和变化的部分隔开是每个设计模式的主题,策略模式也不例外,策略模式的目的就是将算法的使用和算法的实现分离开来。
在这个例子里,算法的使用方式是不变的,都是根据某个算法取得计算后的奖金数额。而算法的实现是各异和变化的,每种绩效对应着不同的计算规则。
一个基于策略模式的程序至少由两部分组成:
- 第一部分是一组策略类,策略类封装了具体的算法,并负责具体的计算过程。
- 第二个部分是环境类
Context,Context接受客户的请求,随后把请求委托给某一个策略类。要做到这点,说明Context中要维持对某个策略对象的引用。
现在用策略模式重构上面的代码。第一个版本是模仿传统面向对象语言中的实现。我们先把每种绩效的计算规则都封装在对应的策略类里面:
var performanceS = function() {};
performanceS.prototype.calculate = function(salary) {
return salary * 4;
};
var performanceA = function() {};
performanceA.prototype.calculate = function(salary) {
return salary * 3;
};
var performanceB = function() {};
performanceB.prototype.calculate = function(salary) {
return salary * 2;
};
接下来定义奖金类Bonus:
var Bonus = function() {
this.salary = null; // 原始工资
this.strategy = null; // 绩效等级对应的策略对象
};
Bonus.prototype.setSalary = function(salary) {
this.salary = salary; // 设置员工的原始工资
};
Bonus.prototype.setStrategy = function(strategy) {
this.strategy = strategy; // 设置员工绩效等级对应的策略对象
};
Bonus.prototype.getBonus = function() { // 取得奖金数额
return this.strategy.calculate(this.salary); // 把计算奖金的操作委托给对应的策略对象
};
接下来,我们先创建一个bonus对象,并给bonus对象设置一些原始的数据,比如员工的原始工资数额。接下来把某个计算奖金的策略对象也传入bonus对象内部保存起来。当调用bonus.getBonus()来计算奖金的时候,bonus本身并没有能力进行计算,而是把请求委托给了之前保存好的策略对象:
var bonus = new Bonus();
bonus.setSalary(10000);
bonus.setStrategy(new performanceS()); // 设置策略对象
console.log(bonus.getBonus()); // 40000
bonus.setStrategy(new performanceA()); // 设置策略对象
console.log(bonus.getBonus()); // 30000
JavaScript版本的策略模式
在前面我们让strategy对象从各个策略类中创建而来,这是模拟一些传统面向对象语言的实现。实际上在JavaScript语言中,函数也是对象,所以更简单直接的做法是把strategy直接定义为函数:
var strategy = {
"S": function(salary) {
return salary * 4;
},
"A": function(salary) {
return salary * 3;
},
"B": function(salary) {
return salary * 2;
}
};
同样,Context也没有必要必须用Bonus类来表示,我们依然用calculateBonus函数充当Context来接受用户的请求。经过改造,代码的结构变得更加简洁:
var strategy = {
"S": function(salary) {
return salary * 4;
},
"A": function(salary) {
return salary * 3;
},
"B": function(salary) {
return salary * 2;
}
};
var calculateBonus = function(level, salary) {
return strategy[level](salary);
};
console.log(calculateBonus('S', 20000)); // 80000
console.log(calculateBonus('A', 10000)); // 30000
多态在策略模式中的体现
通过使用策略模式重构代码,我们消除了原程序中大片的条件分支语句。所有跟计算奖金有关的逻辑不再放在Context中,而是分布在各个策略对象中。Context并没有计算奖金的能力,而是把这个职责委托给了某个策略对象。每个策略对象负责的算法已被各自封装在对象内部。当我们对这些策略对象发出“计算奖金”的请求时,它们会返回各自不同的计算结果,这正是对象多态性的体现,也是“它们可以相互替换”的目的。替换Context中当前保存的策略对象,便能执行不同的算法来得到我们想要的结果。
使用策略模式实现缓动动画
有一段时间网页游戏非常流行,HTML5版本的游戏可以达到不逊色于Flash游戏的效果。如果我们明白了怎样让一个小球运动起来,那么离编写一个完整的游戏就不远了,本节并不会从头到尾编写一个完整的游戏,我们首先要做的是让一个小球按照不同的算法进行运动。
1.实现动画效果的原理
用JavaScript实现动画效果的原理跟动画片的制作一样,动画片是把一些差距不大的原画以较快的帧数播放,来达到视觉上的动画效果。在JavaScript中,可以通过连续改变元素的某个CSS属性,比如left、top、background-position来实现动画效果。
2.思路和一些准备工作
我们目标是编写一个动画类和一些缓动算法,让小球以各种各样的缓动效果在页面中运动。在运动开始之前,需要提前记录一些有用的信息,至少包括以下信息:
- 动画开始时,小球所在的原始位置
- 小球移动的目标位置
- 动画开始时的准确时间点
- 小球运动持续的时间
随后,我们会用setInterval创建一个定时器,定时器每隔19ms循环一次。在定时器的每一帧里,我们会把动画已消耗的时间、小球原始位置、小球目标位置和动画持续的总时间等信息传入缓动算法。该算法会通过这几个参数,计算出小球当前应该所在的位置。最后再更新该div对应的CSS属性,小球就能够顺利地运动起来了。
3.让小球运动起来
在实现完整的功能之前,我们先了解一些常用的缓动算法,这些算法最初来自Flash,但可以非常方便地移植到其他语言中。
这些算法都接受4个参数,分别是动画已消耗的时间、小球原始位置、小球目标位置、动画持续的总时间,返回的值则是动画元素应该处在的当前位置。
var tween = {
linear: function(t, b, c, d) {
return c * t / d + b;
},
easeIn: function(t, b, c, d) {
return c * (t /= d) * t + b;
},
strongEaseIn: function(t, b, c, d) {
return c * (t /= d) * t * t * t * t + b;
},
strongEaseOut: function(t, b, c, d) {
return c * ((t = t / d - 1) * t * t * t * t + 1) + b;
},
sineaseIn: function(t, b, c, d) {
return c * (t /= d) * t * t + b;
},
sineaseOut: function(t, b, c, d) {
return c * ((t = t / d - 1) * t * t + 1) + b;
}
};
现在我们开始编写完整的代码,下面代码的思想来自jQuery库,由于本节的目标是演示策略模式,而非编写一个完整的动画库,因此我们省去了动画的队列控制等更多完整功能。
首先在页面中放置一个div:
<body>
<div style="position:absolute;background:blue" id="div">我是div</div>
</body>
接下来定义Animate类,Animate的构造函数接受一个参数:即将运动起来的dom节点。
var Animate = function(dom) {
this.dom = dom; // 进行运动的 dom 节点
this.startTime = 0; // 动画开始时间
this.startPos = 0; // 动画开始时,dom 节点的位置,即 dom 的初始位置
this.endPos = 0; // 动画结束时,dom 节点的位置,即 dom 的目标位置
this.propertyName = null; // dom 节点需要被改变的 css 属性名
this.easing = null; // 缓动算法
this.duration = null; // 动画持续时间
};
接下来Animate.prototype.start方法负责启动这个动画,在动画被启动的瞬间,要记录一些信息,供缓动算法在以后计算小球当前位置的时候使用。在记录完这些信息之后,此方法还要负责启动定时器。
Animate.prototype.start = function(propertyName, endPos, duration, easing) {
this.startTime = +new Date; // 动画启动时间
this.startPos = this.dom.getBoundingClientRect()[propertyName]; // dom 节点初始位置
this.propertyName = propertyName; // dom 节点需要被改变的 css 属性名
this.endPos = endPos; // dom 节点目标位置
this.duration = duration; // 动画持续时间
this.easing = tween[easing]; // 缓动算法
var self = this;
var timeId = setInterval(function() { // 启动定时器,开始执行动画
if (self.step() === false) { // 如果动画已结束,则清除定时器
clearInterval(timeId);
}
}, 19);
};
Animate.prototype.start方法接受以下4个参数:
propertyName:要改变的CSS属性名,比如left、top分别表示左右移动和上下移动endPos:小球运动的目标位置duration:动画持续时间easing:缓动算法
再接下来是Animate.prototype.step方法,该方法代表小球运动的每一帧要做的事情。在此处,这个方法负责计算小球的当前位置和调用更新CSS属性值的方法Animate.prototype.update。
Animate.prototype.step = function() {
var t = +new Date; // 取得当前时间
if (t >= this.startTime + this.duration) { // (1)
this.update(this.endPos); // 更新小球的 CSS 属性值
return false;
}
var pos = this.easing(t - this.startTime, this.startPos, this.endPos - this.startPos, this.duration); // pos 为小球当前位置
this.update(pos); // 更新小球的 CSS 属性值
};
(1)处的意思是,如果当前时间大于动画开始时间加上动画持续时间之和,说明动画已经结束,此时要修正小球的位置。因为在这一帧开始之后,小球的位置已经接近了目标位置,但很可能不完全等于目标位置。此时我们要主动修正小球的当前位置为最终的目标位置。此外让Animate.prototype.step方法返回false,可以通知Animate.prototype.start方法清除定时器。
最后是负责更新小球CSS属性值的Animate.prototype.update方法:
Animate.prototype.update = function(pos) {
this.dom.style[this.propertyName] = pos + 'px';
};
接下来可以做一些小测试:
var div = document.getElementById('div');
var animate = new Animate(div);
animate.start('left', 500, 1000, 'strongEaseOut');
// animate.start('top', 1500, 500, 'strongEaseIn');
本节我们学会了怎样编写一个动画类,利用这个动画类和一些缓动算法就可以让小球运动起来。我们使用策略模式把算法传入动画类中,来达到各种不同的缓动效果,这些算法都可以轻易地被替换为另一个算法,这是策略模式的经典运用之一。策略模式的实现并不复杂,关键是如何从策略模式的实现背后,找到封装变化、委托和多态性这些思想的价值。
更广义的“算法”
策略模式指的是定义一系列的算法,并且把它们封装起来。本章我们介绍的计算奖金和缓动动画的例子都封装了一些算法。
从定义上看,策略模式就是用来封装算法的。但如果把策略模式仅仅用来封装算法,未免有点大材小用。在实际开发中,我们通常会把算法的含义扩散开来,使策略模式也可以用来封装一系列的“业务规则”。只要这些业务规则指向的目标一致,并且可以被替换使用,我们就可以用策略模式来封装他们。
表单校验
假设我们正在编写一个注册的页面,在点击注册按钮之前,有如下几条校验逻辑:
- 用户名不能为空
- 密码长度不能少于6位
- 手机号码必须符合格式
1.表单校验的第一个版本
没有引入策略模式的表单校验的第一个版本:
<html>
<body>
<form action="http://xxx.com/register" id="registerForm" method="post">
请输入用户名:<input type="text" name="userName" />
请输入密码:<input type="text" name="password" />
请输入手机号码:<input type="text" name="phoneNumber" />
<button>提交</button>
</form>
<script>
var registerForm = document.getElementById('registerForm');
registerForm.onsubmit = function() {
if (registerForm.userName.value === '') {
alert('用户名不能为空');
return false;
}
if (registerForm.password.value.length < 6) {
alert('密码长度不能少于6位');
return false;
}
if (!/(^1[3|5|8][0-9]{9}$)/.test(registerForm.phoneNumber.value)) {
alert('手机号码格式不正确');
return false;
}
}
</script>
</body>
</html>
这是一种很常见的代码编写方式,它的缺点跟计算奖金的最初版本一模一样。
registerForm.onsubmit函数比较庞大,包含了很多if-else语句,这些语句需要覆盖所有的校验规则registerForm.onsubmit函数缺乏弹性,如果增加了一种新的校验规则,或者想把密码的长度校验从6改成8,我们都必须深入registerForm.onsubmit函数的内部实现,这是违反开放-封闭原则的- 算法的复用性差,如果在程序中增加了另外一个表单,这个表单也需要进行一些类似的校验,那我们很可能将这些校验逻辑复制得漫天遍野
2.用策略模式重构表单校验
第一步我们要把这些校验逻辑都封装成策略对象:
var strategies = {
isNonEmpty: function(value, errorMsg) { // 不为空
if (value === '') {
return errorMsg;
}
},
minLength: function(value, length, errorMsg) { // 限制最小长度
if (value.length < length) {
return errorMsg;
}
},
isMobile: function(value, errorMsg) { // 手机号码格式
if (!/(^1[3|5|8][0-9]{9}$)/.test(value)) {
return errorMsg;
}
}
};
接下来我们准备实现Validator类。Validator类在这里作为Context,负责接收用户的请求并委托给strategy对象。在给出Validator类的代码之前,有必要提前了解用户是如何向Validator类发送请求的,这有助于我们知道如何去编写Validator类的代码:
var validataFunc = function() {
var validator = new Validator(); // 创建一个 validator 对象
// 添加一些校验规则
validator.add(registerForm.userName, 'isNonEmpty', '用户名不能为空');
validator.add(registerForm.password, 'minLength:6', '密码长度不能少于6位');
validator.add(registerForm.phoneNumber, 'isMobile', '手机号码格式不正确');
var errorMsg = validator.start(); // 获得校验结果
return errorMsg; // 返回校验结果
}
var registerForm = document.getElementById('registerForm');
registerForm.onsubmit = function() {
var errorMsg = validataFunc(); // 如果 errorMsg 有确切的返回值,说明未通过校验
if (errorMsg) {
alert(errorMsg);
return false; // 阻止表单提交
}
}
我们先创建了一个validator对象,然后通过validator.add方法,往validator对象中添加一些校验规则。validator.add方法接受3个参数:
- 参与校验的输入框
- 以冒号隔开的字符串。冒号前的代表客户挑选的
strategy对象,冒号后的表示在校验过程中所必需的一些参数,不包含冒号则表示校验不需要额外的参数信息 - 校验未通过时返回的错误信息
当我们往validator对象里添加完一系列校验规则之后,会调用validator.start()方法来启动校验。如果validator.start()返回了一个确切的errorMsg字符串当作返回值,说明该次校验没有通过,此时需让registerForm.onsubmit方法返回false来阻止表单的提交。
最后是Validator类的实现:
var Validator = function() {
this.cache = []; // 保存校验规则
};
Validator.prototype.add = function(dom, rule, errorMsg) {
var ary = rule.split(':'); // 把 strategy 和参数分开
this.cache.push(function() { // 把校验的步骤用空函数包装起来,并且放入 cache
var strategy = ary.shift(); // 用户挑选的 strategy
ary.unshift(dom.value); // 把 input 的 value 添加进参数列表
ary.push(errorMsg); // 把 errorMsg 添加进参数列表
return strategies[strategy].apply(dom, ary);
});
};
Validator.prototype.start = function() {
for (var i = 0, validataFunc; validataFunc = this.cache[i++];) {
var msg = validataFunc(); // 开始校验,并取得校验后的返回信息
if (msg) { // 如果有确切的返回值,说明校验没有通过
return msg;
}
}
}
使用策略模式重构代码后,我们仅仅通过“配置”的方式就可以完成一个表单的校验,这些校验规则也可以复用在程序的任何地方,还能作为插件的形式,方便地被移植到其他项目中。
在修改某个校验规则的时候,只需要编写或者改写少量的代码。比如我们想将用户名输入框的校验规则改成用户名不能少于10个字符:
validator.add(registerForm.userName, 'isNonEmpty', '用户名不能为空');
改成:
validator.add(registerForm.userName, 'minLength:10', '用户名长度不能小于10位');
3.给某个文本输入框添加多种校验规则
现在的用户名输入框只能校验一种规则,如果我们既想校验它是否为空,又想校验它输入文本的长度不小于10呢?我们期望以这样的形式进行校验:
validator.add(registerForm.userName, [
{
strategy: 'isNonEmpty',
errorMsg: '用户名不能为空'
},
{
strategy: 'minLength:10',
errorMsg: '用户名长度不能小于10位'
}
]);
下面提供的代码可用于一个文本输入框对应多种校验规则:
<html>
<body>
<form action="http://xxx.com/register" id="registerForm" method="post">
请输入用户名:<input type="text" name="userName" />
请输入密码:<input type="text" name="password" />
请输入手机号码:<input type="text" name="phoneNumber" />
<button>提交</button>
</form>
<script>
// 策略对象
var strategies = {
isNonEmpty: function(value, errorMsg) {
if (value === '') {
return errorMsg;
}
},
minLength: function(value, length, errorMsg) {
if (value.length < length) {
return errorMsg;
}
},
isMobile: function(value, errorMsg) {
if (!/(^1[3|5|8][0-9]{9}$)/.test(value)) {
return errorMsg;
}
}
};
// Validator 类
var Validator = function() {
this.cache = [];
};
Validator.prototype.add = function(dom, rules) {
var self = this;
for (var i = 0, rule; rule = rules[i++];) {
(function(rule) {
var strategyAry = rule.strategy.split(':');
var errorMsg = rule.errorMsg;
self.cache.push(function() {
var strategy = strategyAry.shift();
strategyAry.unshift(dom.value);
strategyAry.push(errorMsg);
return strategies[strategy].apply(dom, strategyAry);
});
})(rule)
}
};
Validator.prototype.start = function() {
for (var i = 0, validataFunc; validataFunc = this.cache[i++];) {
var errorMsg = validataFunc();
if (errorMsg) {
return errorMsg;
}
}
};
// 客户调用代码
var registerForm = document.getElementById('registerForm');
var validataFunc = function() {
var validator = new Validator();
validator.add(registerForm.userName, [{
strategy: 'isNonEmpty',
errorMsg: '用户名不能为空'
},
{
strategy: 'minLength:10',
errorMsg: '用户名长度不能小于10位'
}]);
validator.add(registerForm.password, [{
strategy: 'minLength:6',
errorMsg: '密码长度不能少于6位'
}]);
validator.add(registerForm.phoneNumber, [{
strategy: 'isMobile',
errorMsg: '手机号码格式不正确'
}]);
var errorMsg = validator.start();
return errorMsg;
}
registerForm.onsubmit = function() {
var errorMsg = validataFunc();
if (errorMsg) {
alert(errorMsg);
return false;
}
}
</script>
</body>
</html>
策略模式的优缺点
优点:
- 策略模式利用组合、委托和多态等技术和思想,可以有效地避免多重条件选择语句。
- 策略模式提供了对开放-封闭原则的完美支持,将算法封装在独立的
strategy中,使得它们易于切换,易于理解,易于扩展。 - 策略模式中的算法也可以复用在系统的其他地方,从而避免许多重复的复制粘贴工作。
- 在策略模式中利用组合和委托来让
Context拥有执行算法的能力,这也是继承的一种更轻便的替代方案。
缺点:
- 使用策略模式会在程序中增加许多策略类或者策略对象,但实际上这比把它们负责的逻辑堆砌在
Context中要好。 - 要使用策略模式,必须了解所有的
strategy,必须了解各个strategy之间的不同点,这样才能选择一个合适的strategy。比如,我们要选择一种合适的旅游出行路线,必须先了解选择飞机、火车、自行车等方案的细节。此时strategy要向客户暴露它的所有实现,这是违反最少知识原则的。
一等函数对象与策略模式
Peter Norvig在他的演讲中曾经说过:“在函数作为一等对象的语言中,策略模式是隐形的。strategy就是值为函数的变量。” 在JavaScript中,除了使用类来封装算法和行为之外,使用函数当然也是一种选择。这些“算法”可以被封装到函数中并且四处传递,也就是我们常说的“高阶函数”。实际上在JavaScript这种将函数作为一等对象的语言里,策略模式已经融入到了语言本身当中,我们经常用高阶函数来封装不同的行为,并且把它传递到另一个函数中。当我们对这些函数发出“调用”的消息时,不同的函数会返回不同的执行结果。在JavaScript中,“函数对象的多态性”来得更加简单。
在前面的学习中,为了清楚地表示这是一个策略模式,我们特意使用了strategies这个名字。如果去掉strategies,我们还能认出这是一个策略模式吗?
var S = function(salary) {
return salary * 4;
};
var A = function(salary) {
return salary * 3;
};
var B = function(salary) {
return salary * 2;
};
var calculateBonus = function(func, salary) {
return func(salary);
};
calculateBonus(S, 10000); // 40000