Netty心跳检测机制及Netty零拷贝

1,404 阅读7分钟

「这是我参与2022首次更文挑战的第22天,活动详情查看:2022首次更文挑战

Netty心跳

所谓心跳, 即在 TCP 长连接中, 客户端和服务器之间定期发送的一种特殊的数据包, 通知对方自己还在线, 以确保 TCP 连接的有效性.在 Netty 中, 实现心跳机制的关键是IdleStateHandler, 看下它的构造器:

public IdleStateHandler(int readerIdleTimeSeconds, int writerIdleTimeSeconds, int allIdleTimeSeconds) {

    this((long)readerIdleTimeSeconds, (long)writerIdleTimeSeconds, (long)allIdleTimeSeconds, TimeUnit.SECONDS);

}

这里解释下三个参数的含义:

readerIdleTimeSeconds: 读超时. 即当在指定的时间间隔内没有从 Channel 读取到数据时, 会触发一个 READER_IDLE 的IdleStateEvent 事件.

writerIdleTimeSeconds: 写超时. 即当在指定的时间间隔内没有数据写入到 Channel 时, 会触发一个 WRITER_IDLE 的IdleStateEvent 事件.

allIdleTimeSeconds: 读/写超时. 即当在指定的时间间隔内没有读或写操作时, 会触发一个 ALL_IDLE 的 IdleStateEvent 事件.

注:这三个参数默认的时间单位是秒。若需要指定其他时间单位,可以使用另一个构造方法:

IdleStateHandler(boolean observeOutput, long readerIdleTime, long writerIdleTime, long allIdleTime, TimeUnit unit)

Netty 服务端添加心跳

要实现Netty服务端心跳检测机制需要在服务器端的ChannelInitializer中加入如下的代码:

pipeline.addLast(new IdleStateHandler(3, 0, 0, TimeUnit.SECONDS));

IdleStateHandler源码

初步地看下IdleStateHandler源码,先看下IdleStateHandler中的channelRead方法:

image.png 红框代码其实表示该方法只是进行了透传,不做任何业务逻辑处理,让channelPipe中的下一个handler处理channelRead方法我们再看看channelActive方法:

image.png 这里有个initialize的方法,这是IdleStateHandler的精髓,接着探究

image.png 这边会触发一个Task,ReaderIdleTimeoutTask,这个task里的run方法源码是这样的:

image.png 第一个红框代码是用当前时间减去最后一次channelRead方法调用的时间,假如这个结果是6s,说明最后一次调用channelRead已经是6s之前的事情了,你设置的是5s,那么nextDelay则为-1,说明超时了,那么第二个红框代码则会触发下一个handler的userEventTriggered方法:

image.png 如果没有超时则不触发userEventTriggered方法。

实现代码

服务端代码

package com.jony.netty.heartbeat;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;
import io.netty.handler.timeout.IdleStateHandler;

import java.util.concurrent.TimeUnit;

public class HeartBeatServer {

    public static void main(String[] args) throws Exception {
        EventLoopGroup boss = new NioEventLoopGroup();
        EventLoopGroup worker = new NioEventLoopGroup();
        try {
            ServerBootstrap bootstrap = new ServerBootstrap();
            bootstrap.group(boss, worker)
                    .channel(NioServerSocketChannel.class)
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        protected void initChannel(SocketChannel ch) throws Exception {
                            ChannelPipeline pipeline = ch.pipeline();
                            pipeline.addLast("decoder", new StringDecoder());
                            pipeline.addLast("encoder", new StringEncoder());
                            //IdleStateHandler的readerIdleTime参数指定超过3秒还没收到客户端的连接,
                            //会触发IdleStateEvent事件并且交给下一个handler处理,下一个handler必须
                            //实现userEventTriggered方法处理对应事件
                            pipeline.addLast(new IdleStateHandler(3, 0, 0, TimeUnit.SECONDS));
                            pipeline.addLast(new HeartBeatServerHandler());
                        }
                    });
            System.out.println("netty server start。。");
            ChannelFuture future = bootstrap.bind(9000).sync();
            future.channel().closeFuture().sync();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            worker.shutdownGracefully();
            boss.shutdownGracefully();
        }
    }
}

客户端代码

package com.jony.netty.heartbeat;

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.codec.string.StringEncoder;

import java.util.Random;

public class HeartBeatClient {
    public static void main(String[] args) throws Exception {
        EventLoopGroup eventLoopGroup = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.group(eventLoopGroup).channel(NioSocketChannel.class)
                    .handler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        protected void initChannel(SocketChannel ch) throws Exception {
                            ChannelPipeline pipeline = ch.pipeline();
                            pipeline.addLast("decoder", new StringDecoder());
                            pipeline.addLast("encoder", new StringEncoder());
                            pipeline.addLast(new HeartBeatClientHandler());
                        }
                    });

            System.out.println("netty client start。。");
            Channel channel = bootstrap.connect("127.0.0.1", 9000).sync().channel();
            String text = "Heartbeat Packet";
            Random random = new Random();
            while (channel.isActive()) {
                int num = random.nextInt(10);
                Thread.sleep(num * 1000);
                channel.writeAndFlush(text);
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            eventLoopGroup.shutdownGracefully();
        }
    }

    static class HeartBeatClientHandler extends SimpleChannelInboundHandler<String> {

        @Override
        protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception {
            System.out.println(" client received :" + msg);
            if (msg != null && msg.equals("idle close")) {
                System.out.println(" 服务端关闭连接,客户端也关闭");
                ctx.channel().closeFuture();
            }
        }
    }
}

为了能让服务端心跳监测异常,服务端设置3s监测一次心跳,那么我们客户端做如下处理,随机产生一个随机码,就可以产生心跳异常了。

Random random = new Random();
while (channel.isActive()) {
    int num = random.nextInt(10);
    Thread.sleep(num * 1000);
    channel.writeAndFlush(text);
}

消息收发处理器

package com.jony.netty.heartbeat;

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
import io.netty.handler.timeout.IdleStateEvent;

public class HeartBeatServerHandler extends SimpleChannelInboundHandler<String> {

    int readIdleTimes = 0;

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
        System.out.println(" ====== > [server] message received : " + s);
        if ("Heartbeat Packet".equals(s)) {
            ctx.channel().writeAndFlush("ok");
        } else {
            System.out.println(" 其他信息处理 ... ");
        }
    }

    @Override
    public void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception {
        IdleStateEvent event = (IdleStateEvent) evt;

        String eventType = null;
        switch (event.state()) {
            case READER_IDLE:
                eventType = "读空闲";
                readIdleTimes++; // 读空闲的计数加1
                break;
            case WRITER_IDLE:
                eventType = "写空闲";
                // 不处理
                break;
            case ALL_IDLE:
                eventType = "读写空闲";
                // 不处理
                break;
        }



        System.out.println(ctx.channel().remoteAddress() + "超时事件:" + eventType);
        if (readIdleTimes > 3) {
            System.out.println(" [server]读空闲超过3次,关闭连接,释放更多资源");
            ctx.channel().writeAndFlush("idle close");
            ctx.channel().close();
        }
    }

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        System.err.println("=== " + ctx.channel().remoteAddress() + " is active ===");
    }
}

如果心跳检测异常,则关闭客户端的管道连接。

输出结果

服务端

 ====== > [server] message received : Heartbeat Packet
/127.0.0.1:61306超时事件:读空闲
 ====== > [server] message received : Heartbeat Packet
 ====== > [server] message received : Heartbeat Packet
/127.0.0.1:61306超时事件:读空闲
 ====== > [server] message received : Heartbeat Packet
/127.0.0.1:61306超时事件:读空闲
/127.0.0.1:61306超时事件:读空闲
 [server]读空闲超过3次,关闭连接,释放更多资源

客户端

client received :ok
 client received :ok
 client received :ok
 client received :ok
 client received :idle close
 服务端关闭连接,客户端也关闭

通过以上输出信息,可以看到只要超过3此读空闲,服务就会自动关闭。

Netty零拷贝

Netty的接收和发送ByteBuffer采用DIRECT BUFFERS,使用堆外直接内存进行Socket读写,不需要进行字节缓冲区的二次拷贝。如果使用传统的JVM堆内存(HEAP BUFFERS)进行Socket读写,JVM会将堆内存Buffer拷贝一份到直接内存中,然后才能写入Socket中。JVM堆内存的数据是不能直接写入Socket中的。相比于堆外直接内存,消息在发送过程中多了一次缓冲区的内存拷贝。可以看下netty的读写源码,比如read源码NioByteUnsafe.read()

image.png

直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域,某些情况下这部分内存也会被频繁地使用,而且也可能导致OutOfMemoryError异常出现。JavaDirectByteBuffer可以分配一块直接内存(堆外内存),元空间对应的内存也叫作直接内存,它们对应的都是机器的物理内存。

image.png 注意:此时只有DirectByteBuffer对象在jvm内存中,它里面的数据在堆外内存,也就是是直接内存中。

直接内存和堆内存的区别

package com.jony.netty.directbuffer;

import java.nio.ByteBuffer;

/**
 * 直接内存与堆内存的区别
 */
public class DirectMemoryTest {

    public static void heapAccess() {
        long startTime = System.currentTimeMillis();
        //分配堆内存
        ByteBuffer buffer = ByteBuffer.allocate(1000);
        for (int i = 0; i < 100000; i++) {
            for (int j = 0; j < 200; j++) {
                buffer.putInt(j);
            }
            buffer.flip();
            for (int j = 0; j < 200; j++) {
                buffer.getInt();
            }
            buffer.clear();
        }
        long endTime = System.currentTimeMillis();
        System.out.println("堆内存访问:" + (endTime - startTime));
    }

    public static void directAccess() {
        long startTime = System.currentTimeMillis();
        //分配直接内存
        ByteBuffer buffer = ByteBuffer.allocateDirect(1000);
        for (int i = 0; i < 100000; i++) {
            for (int j = 0; j < 200; j++) {
                buffer.putInt(j);
            }
            buffer.flip();
            for (int j = 0; j < 200; j++) {
                buffer.getInt();
            }
            buffer.clear();
        }
        long endTime = System.currentTimeMillis();
        System.out.println("直接内存访问:" + (endTime - startTime));
    }

    public static void heapAllocate() {
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < 100000; i++) {
            ByteBuffer.allocate(100);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("堆内存申请:" + (endTime - startTime));
    }

    public static void directAllocate() {
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < 100000; i++) {
            ByteBuffer.allocateDirect(100);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("直接内存申请:" + (endTime - startTime));
    }

    public static void main(String args[]) {
        for (int i = 0; i < 10; i++) {
            heapAccess();
            directAccess();
        }

        System.out.println();

        for (int i = 0; i < 10; i++) {
            heapAllocate();
            directAllocate();
        }
    }
}

输出结果

堆内存访问:101
直接内存访问:63
堆内存访问:75
直接内存访问:46
堆内存访问:47
直接内存访问:67
堆内存访问:135
直接内存访问:43
堆内存访问:117
直接内存访问:54
堆内存访问:70
直接内存访问:52
堆内存访问:74
直接内存访问:39
堆内存访问:56
直接内存访问:40
堆内存访问:56
直接内存访问:36
堆内存访问:58
直接内存访问:39

堆内存申请:15
直接内存申请:50
堆内存申请:11
直接内存申请:41
堆内存申请:106
直接内存申请:57
堆内存申请:2
直接内存申请:30
堆内存申请:2
直接内存申请:112
堆内存申请:2
直接内存申请:31
堆内存申请:2
直接内存申请:25
堆内存申请:3
直接内存申请:27
堆内存申请:7
直接内存申请:30
堆内存申请:6
直接内存申请:185

可以看出
从程序运行结果看出直接内存申请较慢,但访问效率高。在java虚拟机实现上,本地IO会直接操作直接内存(直接内存=>系统调用=>硬盘/网卡),而非直接内存则需要二次拷贝(堆内存=>直接内存=>系统调用=>硬盘/网卡)

直接内存分配源码分析:

public static ByteBuffer allocateDirect(int capacity) {

 return new DirectByteBuffer(capacity);3 }

DirectByteBuffer(int cap) { // package‐private

super(‐1, 0, cap, cap);

boolean pa = VM.isDirectMemoryPageAligned();

int ps = Bits.pageSize();
long size = Math.max(1L, (long)cap + (pa ? ps : 0));
//判断是否有足够的直接内存空间分配,可通过‐XX:MaxDirectMemorySize=<size>参数指定直接内存最大可分配空间,如果不指定默认为最

大堆内存大小,

//在分配直接内存时如果发现空间不够会显示调用System.gc()触发一次full gc回收掉一部分无用的直接内存的引用对象,同时直接内存也会
被释放掉

//如果释放完分配空间还是不够会抛出异常java.lang.OutOfMemoryError

Bits.reserveMemory(size, cap);

long base = 0;

try {

// 调用unsafe本地方法分配直接内存
base = unsafe.allocateMemory(size);
} catch (OutOfMemoryError x) {
/ 分配失败,释放内存
Bits.unreserveMemory(size, cap);
throw x;
}
unsafe.setMemory(base, size, (byte) 0);
if (pa && (base % ps != 0)) {
// Round up to page boundary
address = base + ps ‐ (base & (ps ‐ 1));
} else {
address = base;
}

// 使用Cleaner机制注册内存回收处理函数,当直接内存引用对象被GC清理掉时,

// 会提前调用这里注册的释放直接内存的Deallocator线程对象的run方法
cleaner = Cleaner.create(this, new Deallocator(base, size, cap));

}
// 申请一块本地内存。内存空间是未初始化的,其内容是无法预期的。

// 使用freeMemory释放内存,使用reallocateMemory修改内存大小
public native long allocateMemory(long bytes);
// openjdk8/hotspot/src/share/vm/prims/unsafe.cpp

UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory(JNIEnv *env, jobject unsafe, jlong size))
UnsafeWrapper("Unsafe_AllocateMemory");
size_t sz = (size_t)size;
if (sz != (julong)size || size < 0) {
THROW_0(vmSymbols::java_lang_IllegalArgumentException());
}
if (sz == 0) {
return 0;
}

54 sz = round_to(sz, HeapWordSize);
// 调用os::malloc申请内存,内部使用malloc这个C标准库的函数申请内存
void* x = os::malloc(sz, mtInternal);
if (x == NULL) {
THROW_0(vmSymbols::java_lang_OutOfMemoryError());
}
//Copy::fill_to_words((HeapWord*)x, sz / HeapWordSize);
return addr_to_java(x);62 UNSAFE_END

使用直接内存的优缺点:

优点:

不占用堆内存空间,减少了发生GC的可能

java虚拟机实现上,本地IO会直接操作直接内存(直接内存=>系统调用=>硬盘/网卡),而非直接内存则需要二次拷贝(堆内存=>直接内存=>系统调用=>硬盘/网卡)

缺点:

初始分配较慢

没有JVM直接帮助管理内存,容易发生内存溢出。为了避免一直没有FULL GC,最终导致直接内存把物理内存被耗完。我们可以指定直接内存的最大值,通过-XX:MaxDirectMemorySize来指定,当达到阈值的时候,调用system.gc来进行一次FULL GC,间接把那些没有被使用的直接内存回收掉。