「这是我参与2022首次更文挑战的第12天,活动详情查看:2022首次更文挑战」
前言
每日一题,轻松解题
每日一题为刷题系列 每日刷一题LeetCode题,并且对题目进行分析,分享思路。
正文
:最长公共子序列
难度:中等
题目要求:
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
分析题目:
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
要找到两个字符串中公共的子序列
举个例子
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
:解题
理清思路:
求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。
首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;
另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。
分析:
1. 状态定义
比如对于本题而言,可以定义 dp[i][j] 表示 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。 (注:text1[0:i-1] 表示的是 text1 的 第 0 个元素到第 i - 1 个元素,两端都包含) 之所以 dp[i][j] 的定义不是 text1[0:i] 和 text2[0:j] ,是为了方便当 i = 0 或者 j = 0 的时候,dp[i][j]表示的为空字符串和另外一个字符串的匹配,这样 dp[i][j] 可以初始化为 0.
2. 状态转移方程
知道状态定义之后,我们开始写状态转移方程。
当 text1[i - 1] == text2[j - 1] 时,说明两个子字符串的最后一位相等,所以最长公共子序列又增加了 1,所以 dp[i][j] = dp[i - 1][j - 1] + 1;举个例子,比如对于 ac 和 bc 而言,他们的最长公共子序列的长度等于 a 和 b 的最长公共子序列长度 0 + 1 = 1。 当 text1[i - 1] != text2[j - 1] 时,说明两个子字符串的最后一位不相等,那么此时的状态 dp[i][j] 应该是 dp[i - 1][j] 和 dp[i][j - 1] 的最大值。举个例子,比如对于 ace 和 bc 而言,他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0 与 ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。 综上状态转移方程为:
dp[i][j] = dp[i - 1][j - 1] + 1dp[i][j]=dp[i−1][j−1]+1, 当 text1[i - 1] == text2[j - 1];text1[i−1]==text2[j−1]; dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])dp[i][j]=max(dp[i−1][j],dp[i][j−1]), 当 text1[i - 1] != text2[j - 1]text1[i−1]!=text2[j−1]
3. 状态的初始化
初始化就是要看当 i = 0 与 j = 0 时, dp[i][j] 应该取值为多少。
当 i = 0 时,dp[0][j] 表示的是 text1text1 中取空字符串 跟 text2text2 的最长公共子序列,结果肯定为 0. 当 j = 0 时,dp[i][0] 表示的是 text2text2 中取空字符串 跟 text1text1 的最长公共子序列,结果肯定为 0. 综上,当 i = 0 或者 j = 0 时,dp[i][j] 初始化为 0.
4. 遍历方向与范围
由于 dp[i][j] 依赖与 dp[i - 1][j - 1] , dp[i - 1][j], dp[i][j - 1],所以 ii 和 jj 的遍历顺序肯定是从小到大的。 另外,由于当 ii 和 jj 取值为 0 的时候,dp[i][j] = 0,而 dp 数组本身初始化就是为 0,所以,直接让 ii 和 jj 从 1 开始遍历。遍历的结束应该是字符串的长度为 len(text1)len(text1) 和 len(text2)len(text2)。
5. 最终返回结果
由于 dp[i][j] 的含义是 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。我们最终希望求的是 text1 和 text2 的最长公共子序列。所以需要返回的结果是 i = len(text1) 并且 j = len(text2) 时的 dp[len(text1)][len(text2)]。
编辑代码:
1.首先定义一个函数,获取字符串长度
function longestCommonSubsequence (text1, text2) {
const m = text1.length, n = text2.length;
const dp = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
};
fill()方法用一个固定值填充一个数组中从起始索引到终止索引内的全部元素。不包括终止索引。
2.双重循环,遍历两个字符串
for (let i = 1; i <= m; i++) {
const c1 = text1[i - 1];
for (let j = 1; j <= n; j++) {
const c2 = text2[j - 1];
if (c1 === c2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
- 判断y是奇数或是偶数,奇数加一,偶数除二,直到 Y = X 或 Y < X
3.函数返回最终结果
function longestCommonSubsequence (text1, text2) {
const m = text1.length, n = text2.length;
const dp = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 1; i <= m; i++) {
const c1 = text1[i - 1];
for (let j = 1; j <= n; j++) {
const c2 = text2[j - 1];
if (c1 === c2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
};
总结
无论做什么分析最重要,其中我们分析了题目,分析了解题思路,其实在分析完解题思路后,代码其实就是很简单的事情了,养成习惯,无论做什么之前,都要进行分析,这样有助于你更快更好的完成这件事。