PyTorch-PaddlePaddle模型转化&API映射关系对照表

632 阅读4分钟

「这是我参与2022首次更文挑战的第21天,活动详情查看:2022首次更文挑战」。

PyTorch-PaddlePaddle模型转化&API映射关系对照表

本项目基于X2Paddle研发过程梳理了PyTorch(v1.8.1)与PaddlePaddle 2.0.0 模型转化以及常用API差异与分析。通过本项目,帮助开发者快速迁移PyTorch使用经验,完成模型的开发与调优。

X2Paddle

X2Paddle支持将其余深度学习框架训练得到的模型,转换至PaddlePaddle模型,包括TensorFlow/Caffe/ONNX/PyTorch。

安装

pip install x2paddle==1.0.0rc0 --index https://pypi.Python.org/simple/

PyTorch2Paddle

PyTorch2Paddle支持trace和script两种方式的转换,均是PyTorch动态图到Paddle动态图的转换,转换后的Paddle动态图运用动转静可转换为静态图模型。trace方式生成的代码可读性较强,较为接近原版PyTorch代码的组织结构;script方式不需要知道输入数据的类型和大小即可转换,使用上较为方便,但目前PyTorch支持的script代码方式有所限制,所以支持转换的代码也有所限制。用户可根据自身需求,选择转换方式。

使用trace方式需安装以下依赖 pandas treelib

使用方式

from x2paddle.convert import pytorch2paddle
pytorch2paddle(module=torch_module, 
               save_dir="./pd_model", 
               jit_type="trace", 
               input_examples=[torch_input])
# module (torch.nn.Module): PyTorch的Module。
# save_dir (str): 转换后模型的保存路径。
# jit_type (str): 转换方式。默认为"trace"。
# input_examples (list[torch.tensor]): torch.nn.Module的输入示例,list的长度必须与输入的长度一致。默认为None。

注意: 当jit_type为"trace"时,input_examples不可为None,转换后自动进行动转静; 当jit_type为"script"时",input_examples不为None时,才可以进行动转静。

使用示例

import torch
import numpy as np
from torchvision.models import AlexNet
from torchvision.models.utils import load_state_dict_from_url
# 构建输入
input_data = np.random.rand(1, 3, 224, 224).astype("float32")
# 获取PyTorch Module
torch_module = AlexNet()
torch_state_dict = load_state_dict_from_url('https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth')
torch_module.load_state_dict(torch_state_dict)
# 设置为eval模式
torch_module.eval()
# 进行转换
from x2paddle.convert import pytorch2paddle
pytorch2paddle(torch_module, 
               save_dir="pd_model_trace", 
               jit_type="trace", 
               input_examples=[torch.tensor(input_data)])

PyTorch-PaddlePaddle API映射表

API映射表梳理了PyTorch(v1.8.1)常用API与PaddlePaddle 2.0.0 API对应关系与差异分析。

API映射表目录

类别简介
基础操作类API映射列表主要为torch.XX类API
组网类API映射列表主要为torch.nn.XX类下组网相关的API
Loss类API映射列表主要为torch.nn.XX类下loss相关的API
工具类API映射列表主要为torch.nn.XX类下分布式相关的API和torch.utils.XX类API
视觉类API映射列表主要为torchvision.XX类API

注:所有API列表均持续更新中……

一个简单的PyTorch-PaddlePaddle的例子

PyTorch代码(来自官方文档

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)

batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
    
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork().to(device)
print(model)

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")
            
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
    
epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)
print("Done!")

PaddlePaddle代码

1.导入所需库

import paddle
from paddle import nn
from paddle.io import DataLoader
from paddle.vision import datasets
from paddle.vision.transforms import ToTensor, Compose
from visualdl import LogWriter

2.获取FashionMNIST数据集

training_data = datasets.FashionMNIST(
    mode='train',
    transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
    mode='test',
    transform=ToTensor(),
)

3.设置DataLoader

batch_size = 64

train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  [64, 1, 28, 28]
Shape of y:  [64, 1] paddle.int64

4.定义网络

place  = paddle.set_device('gpu' if paddle.is_compiled_with_cuda() else 'cpu')

class NeuralNetwork(nn.Layer):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits
model = NeuralNetwork()
paddle.summary(model,input_size=(1,28*28),dtypes='float32')
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Flatten-1         [[1, 784]]            [1, 784]              0       
   Linear-1          [[1, 784]]            [1, 512]           401,920    
    ReLU-1           [[1, 512]]            [1, 512]              0       
   Linear-2          [[1, 512]]            [1, 512]           262,656    
    ReLU-2           [[1, 512]]            [1, 512]              0       
   Linear-3          [[1, 512]]            [1, 10]             5,130     
    ReLU-3           [[1, 10]]             [1, 10]               0       
===========================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.02
Params size (MB): 2.55
Estimated Total Size (MB): 2.58
---------------------------------------------------------------------------






{'total_params': 669706, 'trainable_params': 669706}

5.设置优化器

loss_fn = nn.CrossEntropyLoss()
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=1e-3)

6.定义训练过程

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.clear_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

7.定义测试过程

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with paddle.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1).numpy() == y.squeeze().numpy()).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
    return test_loss,correct

8.训练与验证

epochs = 5
log_writer = LogWriter(logdir="./log")
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    loss,acc=test(test_dataloader, model, loss_fn)
    log_writer.add_scalar(tag="test/loss", step=t, value=loss)
    log_writer.add_scalar(tag="test/acc", step=t, value=acc)
print("Done!")

测试集上梯度下降图

请点击此处查看本环境基本用法.
Please click here for more detailed instructions.