「这是我参与2022首次更文挑战的第21天,活动详情查看:2022首次更文挑战」。
PyTorch-PaddlePaddle模型转化&API映射关系对照表
本项目基于X2Paddle研发过程梳理了PyTorch(v1.8.1)与PaddlePaddle 2.0.0 模型转化以及常用API差异与分析。通过本项目,帮助开发者快速迁移PyTorch使用经验,完成模型的开发与调优。
X2Paddle
X2Paddle支持将其余深度学习框架训练得到的模型,转换至PaddlePaddle模型,包括TensorFlow/Caffe/ONNX/PyTorch。
安装
pip install x2paddle==1.0.0rc0 --index https://pypi.Python.org/simple/
PyTorch2Paddle
PyTorch2Paddle支持trace和script两种方式的转换,均是PyTorch动态图到Paddle动态图的转换,转换后的Paddle动态图运用动转静可转换为静态图模型。trace方式生成的代码可读性较强,较为接近原版PyTorch代码的组织结构;script方式不需要知道输入数据的类型和大小即可转换,使用上较为方便,但目前PyTorch支持的script代码方式有所限制,所以支持转换的代码也有所限制。用户可根据自身需求,选择转换方式。
使用trace方式需安装以下依赖 pandas treelib
使用方式
from x2paddle.convert import pytorch2paddle
pytorch2paddle(module=torch_module,
save_dir="./pd_model",
jit_type="trace",
input_examples=[torch_input])
# module (torch.nn.Module): PyTorch的Module。
# save_dir (str): 转换后模型的保存路径。
# jit_type (str): 转换方式。默认为"trace"。
# input_examples (list[torch.tensor]): torch.nn.Module的输入示例,list的长度必须与输入的长度一致。默认为None。
注意: 当jit_type为"trace"时,input_examples不可为None,转换后自动进行动转静; 当jit_type为"script"时",input_examples不为None时,才可以进行动转静。
使用示例
import torch
import numpy as np
from torchvision.models import AlexNet
from torchvision.models.utils import load_state_dict_from_url
# 构建输入
input_data = np.random.rand(1, 3, 224, 224).astype("float32")
# 获取PyTorch Module
torch_module = AlexNet()
torch_state_dict = load_state_dict_from_url('https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth')
torch_module.load_state_dict(torch_state_dict)
# 设置为eval模式
torch_module.eval()
# 进行转换
from x2paddle.convert import pytorch2paddle
pytorch2paddle(torch_module,
save_dir="pd_model_trace",
jit_type="trace",
input_examples=[torch.tensor(input_data)])
PyTorch-PaddlePaddle API映射表
API映射表梳理了PyTorch(v1.8.1)常用API与PaddlePaddle 2.0.0 API对应关系与差异分析。
API映射表目录
类别 | 简介 |
---|---|
基础操作类API映射列表 | 主要为torch.XX 类API |
组网类API映射列表 | 主要为torch.nn.XX 类下组网相关的API |
Loss类API映射列表 | 主要为torch.nn.XX 类下loss相关的API |
工具类API映射列表 | 主要为torch.nn.XX 类下分布式相关的API和torch.utils.XX 类API |
视觉类API映射列表 | 主要为torchvision.XX 类API |
注:所有API列表均持续更新中……
一个简单的PyTorch-PaddlePaddle的例子
PyTorch代码(来自官方文档)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
PaddlePaddle代码
1.导入所需库
import paddle
from paddle import nn
from paddle.io import DataLoader
from paddle.vision import datasets
from paddle.vision.transforms import ToTensor, Compose
from visualdl import LogWriter
2.获取FashionMNIST数据集
training_data = datasets.FashionMNIST(
mode='train',
transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
mode='test',
transform=ToTensor(),
)
3.设置DataLoader
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
Shape of X [N, C, H, W]: [64, 1, 28, 28]
Shape of y: [64, 1] paddle.int64
4.定义网络
place = paddle.set_device('gpu' if paddle.is_compiled_with_cuda() else 'cpu')
class NeuralNetwork(nn.Layer):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
paddle.summary(model,input_size=(1,28*28),dtypes='float32')
---------------------------------------------------------------------------
Layer (type) Input Shape Output Shape Param #
===========================================================================
Flatten-1 [[1, 784]] [1, 784] 0
Linear-1 [[1, 784]] [1, 512] 401,920
ReLU-1 [[1, 512]] [1, 512] 0
Linear-2 [[1, 512]] [1, 512] 262,656
ReLU-2 [[1, 512]] [1, 512] 0
Linear-3 [[1, 512]] [1, 10] 5,130
ReLU-3 [[1, 10]] [1, 10] 0
===========================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.02
Params size (MB): 2.55
Estimated Total Size (MB): 2.58
---------------------------------------------------------------------------
{'total_params': 669706, 'trainable_params': 669706}
5.设置优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=1e-3)
6.定义训练过程
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.clear_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
7.定义测试过程
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with paddle.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1).numpy() == y.squeeze().numpy()).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
return test_loss,correct
8.训练与验证
epochs = 5
log_writer = LogWriter(logdir="./log")
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
loss,acc=test(test_dataloader, model, loss_fn)
log_writer.add_scalar(tag="test/loss", step=t, value=loss)
log_writer.add_scalar(tag="test/acc", step=t, value=acc)
print("Done!")
测试集上梯度下降图
请点击此处查看本环境基本用法.
Please click here for more detailed instructions.